
Stand-Alone Programs for Image Restoration

Geoff Daniell

gjd@lionhouse.plus.com

June 3, 2016

Introduction

The documents restore1.pdf and restore2.pdf describe two plug-ins for

the gimp image processing package which attempt to correct for the de-

terioration of colour photographs with age. Although using these in the

context of gimp is convenient, particularly if further corrections or other

operations such as cropping are needed gimp only acts as a wrapper for the

image processing operations. This document describes the implementation

of the same algorithms as restore2 and restore3 in stand-alone programs

which are particularly convenient for batch processing large numbers of pho-

tographs. These avoid the necessity of installing gimp and getting plug-ins

to work, but obviously preclude additional processing at the same time.

Since the critical part of the plug-in is written in python this is also the

most appropriate scripting language for joining together the various image

processing operations. It is not immediately obvious that the choice of

software for these operations matters, however experiments show that the

result with different image processing software is not always the same. It is

worth listing possible reasons for this; the steps required in the calculation

are

1. Conversion of the .jpg or other photographic file format to an uncom-

pressed internal format which is more suitable for calculations. The

question of compensation for an embedded colour profile could affect

the outcome of the restoration.

2. Calculation of a small copy of the image to speed up subsequent pro-

cessing. Different packages offer choices for the interpolation method,

but these are unlikely to affect the results significantly.

3. Calculation of a colour map reducing the number of colours. This

is a critical step and one most likely to affect the outcome of the

restoration. A number of algorithms are in use; some do not give a

fixed number of colours and in general they are poorly described; often

the criterion for optimality is not explained. I have also invented an

algorithm, which is implemented in python.

1



4. Estimation of the parameters for the restoration. This step is done in

python and is independent of the image processing environment. It is

a two stage process repeating some of the steps in this list.

5. The actual restoration. This involves a scaling and ‘gamma’ correction.

The method of performing the necessary arithmetic varies between

image processing packages but only very small differences in the output

can be expected.

6. Estimation of the ‘saturation’ and its enhancement. There is more

than one definition of ‘saturation’ but provided the correct one is used

the fact that the details of this calculation differ between packages

should not be important.

7. Conversion of the internal image format to .jpg or other photographic

format. As with the initial conversion the question of embedded colour

profiles needs to be noted.

We review the possible advantages and disadvantages of three image pro-

cessing packages.

Python Image Processing Library

Since a python interpreter is essential for the central calculation it is clearly

a good option to do the whole process in python. The Python Image
Processing Library (PIL) ceased being maintained some years ago but

more recently a new version: the Pillow (PIL Fork) has been introduced

and this seems to work well. The advantage of this approach is that it

will work under any operating system including windows. The reading of

images handles embedded colour profiles but these must be reimposed when

saving. Four re-sizing filters are provided; the choice should not matter

much. For colour quantization three different algorithms are available but

they are poorly documented. Method 0, the median cut, is well known and

is the one I have used. One can easily get the palette as a python list but

the ordering of the colours is the reverse of that used in gimp.

For the restoration step an image is easily split into red, green and blue

components and applying a mathematical function identical to the gimp

levels procedure is straigtforward. Internally this operates by constructing

a look-up table with 256 entries and using this to transform each pixel. It

is therefore fast although the function is defined using python code.

A conversion to HSV mode is built-in and one can get the necessary statis-

tics for the saturation adjustment which is done by another mathematical

function on the S channel, followed by conversion back to RGB mode.

The advantage of this implementation is that it is pure python and therefore

portable. The disadvantage is that the quantization procedure is not known

in detail. In practice the results are usually similar but not identical to

those obtained with the gimp plug-in and differences can be attributed to

2



the different colour quantization algorithm. To bypass this unsatisfactory

feature another version has been written which uses my own quantization

procedure, written in python. This was developed because there was some

discussion of removing the procedure from gimp and therefore making the

plug-in fail to work. The advantage of this method is that it is a fixed piece

of code and the results of restoration should be very close to those from

the gimp plug-in using it. It can act as a reference with which other code

for quantization can be compared. It does appear to perform well but the

code included in the python image processing library is hopefully more fully

tested than mine.

Netpbm

An extensive collection of programs for image processing is available under

the name netpbm and includes code for most of the required operations. The

programs can be called from python using the subprocess module. The

only advantage over using the python imaging library is that the code is

better documented. The format .pnm is used for the uncompressed image.

There appears to be no action on embedded colour profiles. There are

several options for producing the small working image but the choice should

not matter. The quantization is provided by the pnmcolormap program

and the algorithm used is documented and a technical reference provided.

Unfortunately the program fails if the image contains too many colours when

it performs an automatic change in the maximum value used to represent

a pixel. This is disastrous for the subsequent use of the colour map in

the restoration. I am not clear why it does this, possibly historically it

was used to save memory. The problem of producing a set of N colours

that ‘best’ represent an image is always soluble even if one can dispute the

interpretation of ‘best’. The only option when using the Netpbm package

is to use a different quantization program, such as my own python one.

There are also problems in doing the restoration using Netpbm. The program

pamfunc provides simple arithmetic but not power law changes. There is

a program pnmgamma that does this but it confuses the use of ‘gamma’ by

display hardware with simple the arithmetical calculations that we need.

The only way to be certain about the result of the calculation is to do it in

python. There is a further problem in that conversion to HSV mode is not

supported so one is forced to do this in python. The program ppmbrighten

can then be used to change the saturation.

In summary the netpbm suite of programs offers little advantage over the

python imaging library and a lot of disadvantages.

ImageMagick

ImageMagick is another powerful suite of image processing programs. There

is a full discussion of color profiles when accessing image files. It offers a

3



large choice of re-sizing filters but as emphasised above which one is used is

probably not important. The quantization algorithm is described in detail,

but it may produce fewer colours than requested; this is a nuisance rather

than a fundamental problem.

The main difficulty with the ImageMagick suite is that it is difficult to get

a list of the colours except embedded in a long list of information about the

image. Expression matching code would then be needed to extract the part

required. The effectiveness of the list of colours produced by the algorithm

in actual restoration has not been investigated.

There is a very comprehensive set of mathematical operations that can be

applied to perform the restoration.

For the saturation adjustmentHSV appears to be supported as a colorspace

although it is then omitted from the list of descriptions.

In summary the ImageMagick operations are well documented and could

be valuable in developing a better stand-alone program for image restora-

tion but they do to offer any immediate advantages over the pure python

described above.

Conclusions

We have investigated three sets of image processing software with a view to

producing a stand-alone program for restoring faded photographs similar to

the gimp plug-in described earlier. The final programs are pure python code

and use the python imaging library Pillow.

Two versions exist: pyrestore2.py uses the built-in colour quantization

code in the library while pyrestore3.py uses my own algorithm for this.

The results are not identical; in general the built-in code produces slightly

warmer colours which are more pleasing but occasionally in produces results

which are much worse. In fact there are small differences between the results

from pyrestore3.py and the corresponding gimp plug-in, which are not

explained.

To run the programs type

python pyrestoreN.py dir=<directory> Light-Dark=<value> saturate=<[True|False]>

in a terminal. Choose N equal to 2 or 3 as required. <directory> is the

directory containing the files to be processed, default = current directory,

<value> is a parameter for adjusting the brightness of the restored image,

the default is 1.0 and the value of the saturate parameter should be True

or False, the default is True which increases the saturation of the restored

image.

This processes all the files in <directory> and puts the restored ones in

a subdirectory restored, which must exist. Parameters that take default

values may be omitted.

4


