tests floating arithmetic by evaluating the sum of four numerical series p1=20 70s10 clear 12, 10, 8, 6, 4 9s2 75sr-1 70s12 s = 12, becomes function part of add order 70t0 t = 0, used to skip even terms in sum 26f1(98 F(4) = n, initially n = 1 18f4 14f4 19f2 F(2) = n^2 26f1 15f2 19f2 F(2) = 1/n^2 18f6 F(6) = sum 1/n^2 10f2 14f2 18f12 F(12) = sum 1/n^4 10f2 76t1024 skip alternate n 18f8 F(8) = sum 1/(2n+1)^2 72t1024 10f10 F(M) = sum so far (-1)^(n+1)/n^2 89sr1 store s as function part of next order 0f2 add or subtract term alternately 19f10 F(10) = sum including next term 3s0 70s25 set s = 25 - s, that is 12 and 13 alternately 10f2 13*1e-7 54p98 loop if 1/n^2 > 1e-7 110f1534 F(M) = pi/2 19f2 12f2 19f2 14f2 19f2 F(2) = pi^2 10f6 sum 1/n^2 59f29 10f2 15*6.0 59f29 pi^2/6 107f2 print cr 107f8 print lf 10f8 sum 1/(2n+1)^2 59f29 10f2 15*8.0 59f29 pi^2/8 107f2 107f8 10f10 sum (-1)^(n+1)/n^2 59f29 10f2 15*12.0 59f29 pi^2/12 107f2 107f8 10f12 sum 1/n^4 59f29 10f2 14f2 15*90.0 59f29 pi^4/90 101f0 s20