EDSAC 2

MAURICE V. WILKES

EDSAC 2, which came into operation early in 1958, was designed by the
team that had successfully built and operated EDSAC 1, and embodied the
experience obtained with that machine. EDSAC 2 was the first computer to
have a microprogrammed control unit, and it established beyond doubt the via-
bility of microprogramming as a basis for computer design — this in spite of
the fact that vacuum tubes were far from ideal for the purpose.

At the mechanical level of organization, EDSAC 2 was packaged in a bit-
sliced manner, with interchangeable plug-in units. This method of packaging
was well matched to the vacuum tube technology of the period, and its ex-
pected advantages — arising from the replication of units — were fully real-

ized.

The article gives a description of the principal hardware features of

EDSAC 2.

he vear 1950 saw the beginning of much discussion in

the Mathematical Laboratory (later renamed the Com-
puter Laboratory) of the University of Cambridge as to
what the future constructional plans of the laboratory were
to be. Experience with EDSAC 1 on real problems had
demonstrated, beyond doubt, the essential soundness of the
stored-program concept and the ability of available technol-
ogy to implement it. There was some concern on the score
of reliability, but no one questioned the conclusion that what
was wanted was a better stored-program computer, not a
computer of some different kind. This was also the experi-
ence of other groups in the US and the UK where early
stored-program computers had been built.

This article describes the principal hardware features of
EDSAC 2 (Figure 1), which came into operation early in
1958 and was eventually closed down on November 1, 1965.
Background information on the project and the way it de-
veloped will be found in my Memoirs.!

Origin of the design concepts

In July 1951 I was invited to speak at a conference held
in Manchester to mark the inauguration of the Ferranti
Mark I computer. I took advantage of the invitation to set
forth some of the conclusions I had come to as a result of
the experienced gained from EDSAC 1. I said, “I think that
most people will agree that the first consideration for a
designer, at the present time, is how he is to achieve the
maximum degree of reliability in his machine.”” I went on
to say that, among other things, the reliability of a machine
will depend on the amount of equipment it contains, its
complexity, and the degree of repetition of units. This led
me to advocate a parallel arithmetic unit organized on what
later came to be called the bit-sliced principle. The arithme-
tic circuits were to be divided into physical units or chassis,
each of which contained one stage of the adder and one

flip-flop from each of the various registers. I pointed out that
the control registers, along with the adder associated with
them, could be organized in a similar manner. I then went
on to introduce the concept to which I gave the name
“microprogramming.”

Around the end of 1951 or early in 1952, William
Renwick and I, with the general agreement of our col-
leagues, decided to investigate the possibility of building a
computer along the above lines. Renwick’s views were im-
portant since it was on him, as chief engineer of the labora-
tory, that the main load of detailed design would fall if, as
we hoped, the project went ahead. David Wheeler left the
laboratory at this juncture to take up a temporary faculty
appointment at the University of Illinois and did not return
until the late summer of 1953. Some of the main decisions
about the register structure of the machine were, therefore,
taken in his absence. However, he returned in time to be
fully responsible for the design of the instruction set, includ-
ing the floating-point format and the programming environ-
ment.

Technical problems

We felt that we had enough experience to design a
parallel arithmetic unit that would be both reliable and fast,
although there were a number of engineering design prob-
lems which caused concern at the period in question. One
was that of avoiding pattern sensitivity in the circuits. An
adder, for example, would be found to work perfectly with
most input streams, but would give trouble with streams
corresponding to certain bit patterns. Pattern sensitivity was
a result of memory in the circuits arising, in particular, from
the use of capacitors for coupling or other purposes. An
important advantage of a parallel design was that the regis-
ters could be DC coupled, so that there would be no cou-
pling capacitors that might introduce pattern sensitivity. I

1058-6180/92/1000-0049$03.00 © 1992 IEEE

IEEE Annals of the History of Computing, Vol. 14,No.4,1992 e 49

EDSAC 2

Figure 1. A program-test session with EDSAC 2, with users standing in line to run their programs.

was personally almost paranoid on that issue and would not
even contemplate putting small speedup capacitors across
the resistors in the flip-flops. In this I was much influenced
by Julian Bigelow, the designer of the computer built at the
Institute for Advanced Study in Princeton.

Imperfect switching by gates, leading to what was known
as break-through, gave rise to further problems for the
designer, who had always to be worrying about how to keep
the baseline of the waveforms clean.

The problem of designing and maintaining early comput-
ers was much aggravated by the lack of stability in the circuit
parameters. This was partly, but only partly, due to a steady
loss of emission in the vacuum tubes. Equally important
were changes with time in the values of the resistors which
were, at that period, made of a molded composite material.
The value of a resistor would decrease with time, particu-
larly if it were fully loaded. It was necessary to design the
circuits with large operating margins and to pay special
attention to the stabilization of power supplies.

The problem of the memory

Although the design of a fast parallel arithmetic unit
presented no serious problem, there was by contrast grave
difficulty in seeing how it could be matched with a memory
of compatible speed. In fact, in early 1952 there were only
two forms of high-speed memory that could be said to be in
any sense out of the research stage. One was the mercury
(ultrasonic) memory that we had used in EDSAC 1 and the
other was the Williams tube memory. The latter, in a parallel
form, was capable of sufficiently high-speed operation.
However, there were difficulties both in acquiring high-
quality cathode-ray tubes and in designing analog deflection

circuits that would operate efficiently and reliably. We had
no experience with cathode-ray tube storage and, since we
felt that this form of storage would eventually be displaced
by something better, we were not anxious to become in-
volved. On the other hand, we thoroughly understood and
had confidence in the mercury memory. We felt that there
was no reason why a parallel mercury memory — with one
mercury tank to correspond to each digital position in the
word — should not be capable of operation in a rugged and
reliable manner. However, even if we used shorter tanks and
a higher pulse rate than in EDSAC 1, the speed of the
memory would be far below that of the arithmetic unit. Since
we were stressing reliability rather than speed, we decided
to proceed with development work on a mercury memory,
but with the hope that something better would soon become
available. Fortunately, core memory came at the right time.

I was present at MIT in August 1953 when the first core
memory was fitted, with dramatic success, to the Whirlwind
computer. When I returned to the UK, we took the decision
to abandon further work on a mercury memory and work
on a core memory instead. By good fortune, Mullard Lim-
ited, who were already manufacturers of ceramic magnetic
materials, were interested in working with us on the devel-
opment and testing of cores with a square hysteresis loop.
By the beginning of 1953, we saw our way clearly ahead, and
the design and construction of EDSAC?2 as eventually built
may be said to have begun at that time.

Core memory

The core memory for EDSAC 2 was designed by
Renwick on a word-organized basis, using cores manufac-
tured by Mullard in the UK.! In a word-organized memory,

50 e [EEE Annals of the History of Computing, Vol. 14, No. 4,1992

a separate wire is threaded through each of the cores — 40
innumber in the case of EDSAC2 — used to store the digits
of each word in the memory. There are thus as many wires
as there are words in the memory. When one of the wires is
pulsed, the digits of the corresponding word are read out in
parallel. The incoming address digits must be decoded and
an appropriate waveform generated to drive the selected
word wire. In EDSAC2, these functions were performed by
a switch matrix of 32 x 32 ferrite cores, these cores being of
a larger size than memory cores. Further information on
word-organized memories will be found in my 1956 book.?

I'would personally have preferred to adopt the system of
memory organization developed at MIT and which became,
in due course, generally adopted. However, Renwick was
anxious to try his hand at a word-organized system, and it
certainly worked very well for a memory of 1,024 words,
which was what was required for EDSAC 2.

In addition to the main memory, EDSAC 2 had a read-only
memory in which information was permanently wired. This
was known as the reserved store, and was implemented by
means of extra core planes driven by an extension to the switch
matrix. These were, in fact, normal core planes, except that they
had extra wires — which I will refer to as priming wires —
threaded through some of the cores. When a current was
passed through one of the priming wires, the cores through
which that wire passed were magnetized in the direction cor-
responding to a 1. In a read operation, all cores in the word to
be read were first set to 0. The priming operation was then
performed and followed by a normal read operation. The
primed cores delivered 1s and the unprimed cores delivered 0s.
There were four priming wires; which of them was used in a
particular read operation was determined by the two high-
order bits in the address of the word being read. One plane of
the read-only memory had, therefore, the same capacity as four
planes of normal memory.

The reserved store contained 768 read-only words plus
64 normal words that could be both written and read. In the
context of the times, the reserved store was an architectural
innovation of greater importance than may be immediately
apparent to the modern reader. It contributed significantly
to the speed of a machine by eliminating the loading time
for frequently used library subroutines, included input and
output subroutines. Moreover, a programmer coming to
EDSAC?2 from EDSAC 1 would find his memory manage-
ment problems greatly eased, since these subroutines were
permanently available and he did not need to allocate space
for them in memory.

Microprogrammed control

The microprogrammed control was the most strikingly
original feature of EDSAC 2, and demonstrated, beyond
doubt, the practicability of this way of building the control
unit of a major machine. However, it was something of a
tour de force to implement a sufficiently fast read-only
memory for the microprogram based on vacuum tubes. This
was because none of the storage elements available for use
in a read-only memory — namely, diodes, capacitors, and
magnetic cores — were well matched to the high output
impedance of a vacuum tube. Later, the coming of transis-

tors was to transform the problem and make microprogram-
ming much more attractive from both the technical and the
economic points of view.

After evaluating the various alternatives, we decided to
use magnetic cores for the microprogram memory. The
cores were arranged in the form of a matrix and switched on

The microprogrammed control was the
most strikingly original feature of
EDSAC 2, and demonstrated, beyond
doubt, the practicability of this way of
building the control unit of a
major machine.

the coincident current principle. The matrix contained 1,024
cores and each corresponded to a micro-operation in the
microprogram.

The cores used were 8 mm in diameter. Each carried two
drive windings of 40 turns each, and a bias winding of 28
turns through which a steady current was passed. The matrix
was driven by powerful vacuum tubes capable of passing a
current of 150 mA through the drive windings. In the case
of the selected core, the combined effect of the current
passing through the two drive windings was sufficient to
overcome the effect of the steady current passing through
the bias winding and to reverse the direction of magnetiza-
tion in the core.

There were about 80 sets of gates in the various parts of
the machine that were controlled by the microprogram.
Corresponding to each set of gates was a wire which will be
referred to as a gate wire. If a particular set of gates needed
to be operated when a certain microinstruction was exe-
cuted, the corresponding gate wire was threaded (three
times) through the core corresponding to that microinstruc-
tion. When the core was switched, an electromotive force of
about 9 volts was induced in the wire and this was sufficient,
without voltage amplification, to drive the gates and so
cause the microinstruction to be executed. In addition to the
gate wires, a further set of wires were threaded through the
cores and their outputs used to determine the next core to
be switched.

The need for conditional microinstructions was met by
locating two or four cores at some of the nodes of the matrix
instead of only one. At any time, all but one of these cores
were biased off, according to the settings of two conditional
flip-flops. By setting these flip-flops in advance, the
microprogrammer could control which of two (or four)
alternative microinstructions would be executed when the
node was selected.

The above statement, namely that more than one core
was located at some nodes of the matrix, must be interpreted
in a logical sense. Physically, all cores were located at the
nodes of a 32 x 32 matrix. The wiring was so arranged that,
logically, there were nodes with 0, 1, 2, or 4 cores. Details of
the way in which this was contrived, along with further

IEEE Annals of the History of Computing, Vol. 14,No. 4,1992 e 51

EDSAC 2

details of the microprogram unit of EDSAC 2, will be found
in a 1958 paper.*

The voltage induced in a wire which threaded a half-
switched core — that is, a core on the same row or column
as aselected core — was small but not zero. As aresult, there
was a danger that the voltage induced in a gate wire which
did not thread the switched core, but which threaded a
number of half-switched cores, would be sufficient to cause
spurious operation of the gate or gates to which the wire was
connected. Advantage was taken of the fact that micro-op-
erations could be allocated to individual cores in an arbitrary
fashion to reduce this danger. It was laid down that a gate
wire should never need to be threaded through more than
four cores situated on any one row or any one column of the
matrix. The total number of contributions from half-
switched cores was therefore limited to eight. The allocation
of microinstructions to cores in such a way as to meet this
requirement was done by means of a program run on
EDSAC 1. This must have been one of the earliest examples
of design automation in which one computer is used to assist
with the design of another in a nontrivial way. More straight-
forward was the use of EDSAC 1 to generate the wiring
schedules for EDSAC?2.

EDSAC 2 was first checked out using a small micropro-
gram matrix with only 48 cores. In this form, the machine
known as EDSAC 1% was capable of real work and was
used by Joyce Wheeler in the spring of 1957 for part of her
thesis research on stellar structure.

A microprogramming system implemented in the vac-
uum tube technology just described represented a large
investment in equipment, and it was desirable to make full
use of that investment. It was accordingly a principle of the
design that every gate in the machine that could be driven
from the microprogram matrix should be so driven. This
goal was achieved to an extraordinaty extent. Neither the
input and output mechanisms nor the magnetic tape decks
had any local sequencing control, but were controlled di-
rectly by the microprogram. Even in the memory, the read-
ing of a word and its subsequent rewriting were controlled
by sequences of microinstructions.

Arithmetic unit and instruction set

The word length of EDSAC 2 was 40 bits, with 20-bit
instructions. Seven of the bits in an instruction constituted
the operation code and 11 the address. There were two
11-bit index registers. Two bits in an instruction gave the
programmer the option of modifying the address by adding
the contents of one or other of those registers, of modifying
it by adding the contents of the program counter (thus
providing for relative addressing), or of not modifying it at
all. We did not follow the EDSAC 1 design and make it
possible to address half registers in arithmetic instructions.

Both the instruction set and the initial input routine were
designed by David Wheeler. The instruction set may be
described as straightforward, symmetrical, and comprehen-
sive, without being overelaborate. Wheeler provided in-
structions which caused the next instruction in the program
to be modified exactly as it would have been if the modifying
quantity had been loaded into an index register. Since it is

common for an index register to be loaded and used once
only, these instructions did much to mitigate any inconve-
nience the programmer might have felt from the fact that
the hardware provided two index registers only. There were
special instructions for facilitating the construction of simple
loops in a program.

Wheeler provided a single logical operation; this was an
oroperation instead of the more obvious and operation that
was provided in EDSAC 1. Given the register structure of
EDSAC 2, the or operation was both simpler and faster.
Wheeler argued that many operations for which an and
instruction might seem appropriate could be better per-
formed by shifting, an example being the building up of
instructions during the reading of an input tape. Neverthe-
less, the decision to provide only an or instruction proved to
be unpopular and later, when a number of enhancements
and improvements were being made, an and operation was
added.

EDSAC 2, like other second-generation vacuum tube
computers, was designed to have floating-point operations.
The complexity of such operations had deterred the design-
ers of the very earliest machines from attempting to imple-
ment them. The advantages of microprogramming were
especially evident in this context, since the complexity was
a problem for the designer of the microprogram, not one for
the designer of the hardware. In EDSAC?2 a substantial part
of the microprogram consisted of microinstructions for im-
plementing the individual steps of floating addition, multi-
plication, and division.

Although EDSAC 2 was provided with floating-point
operations implemented in the microprogram, we took
great care over the design of the fixed-point instructions.
Built in (that is, microprogrammed) division was provided
and was designed in such a way that it was possible to divide
a double-length number in the accumulator by a single-
length number from memory. Experience with division sub-
routines for EDSAC 1 had shown that serious scaling prob-
lems present themselves if it is only possible to divide a
single-length number by another single-length number and
obtain a single-length result. Similarly, the ability to accu-
mulate double-length products in the accumulator had been
found to ease scaling problems, as well as enabling a scalar
product to be evaluated without incurring intermediate
rounding-off errors. We provided enough storage on flip-
flops in the arithmetic unit to enable these double-length
operations to be microprogrammed without requiring inter-
mediate accesses to core memory. This was a more impor-
tant decision than it may seem, because the provision of an
extra register cost a lot in vacuum tubes.

The regular instruction set was supplemented by a set of
instructions that activated subroutines held in the reserved
store. These instructions all had 59 for their operation codes;
what in regular instructions would be the address part indi-
cated the particular subroutine to be called. For example,
the instruction “59 f 11” would cause the floating-point
number in the accumulator to be replaced by its square root.
Analogous instructions would enable trigonometric func-
tions to be computed. Other instructions were concerned
with input, output (including page layout control), solution

52 o IEEE Annals of the History of Computing, Vol. 14, No. 4, 1992

of ordinary differential equations by the Runge-Kutta-Gill
method, and control of the magnetic tape system.

Hardware maintenance

If the microprogramming system is excluded, by far the
greater part of EDSAC 2 consisted of circuits packaged in
a bit-sliced manner. There were 40 arithmetic slices and 11
control slices, each slice being contained in a single plug-in
unit. One of the claims made for the use of a bit-sliced
organization was that it would facilitate maintenance. Ex-
perience with EDSAC 2 bore this out.

When a fault in the computer was suspected, a test
program enabled the control and arithmetic functions to be
exercised. If there were a fault in one of the above-men-
tioned plug-in units, the unit concerned would be identified
by the program. It could then be replaced by a spare one,
and the fault in the original unit could be diagnosed and
corrected at leisure using off-line equipment (Figure 2).

This system was so successful that the off-line testing
facility was gradually enhanced to enable many of the other
units to be similarly tested off line. This extension to units
that were not replicated, or not replicated many times,
involved a significant investment in equipment, but it was
one that experience showed to be amply justified.

A facility known as marginal checking was provided to
help locate incipient faults ahead of the time when they
would impair operation. This enabled a small AC voltage
at mains frequency to be injected in series with the signal
at critical points throughout the machine. A similar system,
but using DC voltages, had been successfully applied to
EDSAC 17

Speed of operation

A sufficient indication of the speed of the machine can
be given by saying that an add or subtract instruction took
17 to 42 microseconds (fixed point) and 100 to 170 micro-
seconds (floating point), while an add-product instruction
took 270 to 330 microseconds (fixed point) and 210 to 340
microseconds (floating point).

When first put into service in 1958, EDSAC 2 ran some-
what more slowly. This was because the microprogram had
been written on the assumption that EDSAC 2 would run
at the same clock speed as EDSAC 114, in spite of the fact
that it had a very much larger microprogram matrix. In fact,
the microprogram ran more slowly, with the result that some
of the nonfunctional microinstructions, which had been in-
cluded in the microprogram for the sole purpose of giving
the adder time to settle down, could be removed.

Input of instructions

EDSAC 1 used five-hole punched paper tape for input
and output, and after some discussion we decided that
EDSAC2 should do the same. The main merit of paper tape
was that programs could be read from it into the memory at
avery high speed — at least 100 instructions per second. The
IBM 704, first announced in May 1954, was a machine of
similar speed to EDSAC2 but used punched cards for input.
With a card reader operating at 150 cards per minute and
one instruction punched on a card, this gave an instruction

Figure 2. Sidney A. Barton (later chief engineer of the
laboratory) inserting a bit-sliced chassis into EDSAC 2. The
chassis slid into a slot and was finally driven home by a screw.
The screw passed through the chassis and terminated in a
handle at the front. The advantage of this system was that it
eliminated any danger of the contacts being damaged when
the chassis was forced home.

input rate of only 2.5 instructions per second. As will be
seen, this influenced the approach made to the design of the
initial input routine.

The initial input routine of EDSAC 2 was the natural
development of that written for EDSAC 1. It contained a
number of additional features, in particular labels, and the
automatic listing of constants that occurred in addresses. I
had referred to labels under the title floating addresses at
the Eastern Joint Computer Conference held in Philadel-
phia in 1951. I described them in greater detail at an ACM
meeting held in Toronto in September 1952° and in a further
paper published in the Proceedings of the Cambridge Phil-
osophical Society in 1953. Until they were implemented for
EDSAC 2, however, no practical use had been made in
Cambridge of the techniques described.

The EDSAC 2 initial input routine provided a set of
assembly-time parameters denoted by pl through p99.
When an input tape was in the process of being read, pl
denoted the storage location into which the next instruction
or number read from the input tape would go; p2 similarly

IEEE Annals of the History of Computing, Vol. 14,No. 4,1992 e 53

EDSAC 2

represented the location into which the next constant would
go. The remaining parameters could be used at the
programmer’s discretion. They could be assigned values
explicitly by means of directives included on the program
tape. Alternatively, they could be set implicitly by being
used as labels. For example, if 27 were punched after an
instruction or a number on the input tape, when the tape was
read, p27 would be set equal to the address of the storage
location in which that instruction or number was placed. The
programmer could write a parameter in the address part of
an instruction, either by itself, or in combination with con-
stants or with other parameters. For example, 2p27 would
represent the value of p27 incremented by 2, and p27p28
would represent the sum of the values of p27 and p28.

The primary consideration in the design of the initial
input routine was speed of input of orders. The (five-hole)
paper-tape code was designed so that all the characters used
in instructions were on the same shift of the keyboard, so
that the length of the program tape was not unnecessarily
increased by shift characters. The high speed of the tape
reader used on EDSAC 2 limited the time available for
processing between the reading of rows of holes. This and
the desire to accommodate the initial-input routine in the
reserved store made it imperative to keep that routine short.
This led to the acceptance of certain restrictions on the use
of parameters ahead of the place in the program at which
values would become assigned to them.? It also led Wheeler
to use decimal digits instead of mnemonic letters to repre-
sent operation codes. I personally felt that this was a retro-
grade step; Wheeler, on the other hand, took the view that
if the numerical codes were allocated on a systematic plan,
they would in practice be as easy to remember as two- or
three-letter alphabetic codes would have been. In the con-
text of EDSAC 2, with only 120 instructions in the instruc-
tion set, he was probably right.

The distinctly parsimonious attitude to assembly-time
features adopted at Cambridge is in marked contrast to the
attitude adopted for the IBM 704. One of the first tasks of
the organization that became SHARE was the standardiza-
tion of the input system for the 704. The program eventually
chosen was called the Symbolic Assembly Program, or SAP.
Because of the slowness of the card reader and the absence
of a reserved store, the same considerations did not apply as
at Cambridge, and SAP provided many of the convenient
features of modern assembly programs.’

Program diagnostic aids

When the machine was initialized for a new program to
be run, every bit in the memory was set to a 1, rather than
to a 0. Since, according to the format used for floating
numbers, no floating number could consist entirely of 1s, any
attempt to read a floating-point number from a part of the
memory that had not been written into caused the machine
to stop. Many a programmer must have been grateful to
Wheeler for his foresight in making this happen.

When any unscheduled stop occurred — for example, in
the circumstances just described, or when an accumulator
overflow occurred — what actually happened was that con-
trol was transferred to a routine in the reserved store which

caused selected information, such as the place in the pro-
gram where the stop occurred and the contents of the accu-
mulator, to be printed out before the machine came to a
stop. This was known as a report stop, and the information
printed was useful both for program debugging and for
diagnosing machine malfunction.

Experience with EDSAC 1 had demonstrated the value
for debugging of being able to keep a record of jumps taken
during the running of the program. The EDSAC 1 trace
routine was perforce interpretive and ran very slowly. The
trace routine in EDSAC 2 was implemented partly in the
microprogram and partly in the reserved store. Switching it
in slowed the machine down by a factor of no more than
about 10. A utility program was provided for analyzing the
data accumulated by the trace program and printing the
result of the analysis in a compact form, showing cycles
within cycles up to a depth of three.

Tape readers and punches

Early in its life, EDSAC 1 was equipped with a photo-
electric tape reader in which the tape was advanced one row
of holes at a time by a ratchet-driven sprocket wheel, the
ratchet being activated by an electromagnet. This would
read tape at a speed of about 50 rows of holes per second.
B. Pollard, at Ferranti Ltd., was responsible for the devel-
opment of a roller-driven photoelectric tape reader, using
electromagnetic clutches. This had no sprocket wheel, but
relied on photoelectric sensing of the sprocket holes. When
arow of holes had been read, the tape reader would, unless
the next row of holes was immediately called for, bring the
tape to rest with that row in the reading position.

We developed, for EDSAC 2, a tape reader in which the
tape was driven by a continuously rotating capstan against
which it could be pressed by a solenoid-operated pinch
roller. It was necessary to have a brake to stop the tape
quickly, and this brake took the simple form of a flat soft
iron armature held in a resilient mounting in such a position
that it rode on the upper surface of the tape. Below the tape
was a flat plate in which a solenoid was incorporated. When
the solenoid was energized, the magnetic field passed
through the tape and attracted the armature. The effect was
to bring the tape rapidly to rest by squeezing it between the
armature and the plate.

The tape reader could read tape at speeds up to 1,000
rows of holes per second and stop instantly, if required, with
the next row in position for reading. The secret was to make
the brake sufficiently powerful to arrest the tape even
though the pinch roller was still pressing it against the
capstan. Rapid stopping could then be achieved even if the
pinchroller mechanism was relatively slow in operating. The
tape reader was very successful. It was taken up by Elliott
Brothers and remained in production for many years.

EDSAC?2 used five-hole punched paper tape for output
as well as for input. Punches running at various speeds were
used, the fastest being an experimental punch supplied by
Creed Ltd. and capable of punching tape at the rate of 300
rows per second. This was much used on account of its high
speed, although it was not as reliable as could be desired.
The paper-tape code was chosen so that each of the decimal

54 e [EEE Annals of the History of Computing, Vol. 14, No. 4, 1992

digits from 0 through 9 was represented by two holes and
three blanks. This gave good protection against punching
errors, since two compensating errors were required to
convert a decimal digit into another decimal digit. The same
system had been used, with great success, on EDSAC 1
during its later years.

The emphasis placed on paper-tape readers and punches
that ran at a high speed, and could be started and stopped
rapidly, may seem surprising, since the total volume of input
and output was not large. The reason was that input and
output time could not be overlapped to any significant
extent with computing time. At a later period, input and
output would be buffered. In the 1950s, this would have
been impracticable, since it would have meant the use, on a
large scale, of vacuum tube flip-flops. It must be remem-
bered that techniques by means of which main memory
could be used for buffering had not yet been developed.
Even if they had been, the main memory would not have
been large enough to permit their effective use.

Magnetic tape

The magnetic tape decks attached to EDSAC 2 were
bought from Decca Radar, although the basic research and
development for them had been done in the Mathematical
Laboratory by D.W. Willis. Willis had in due course joined
Decca, taking the technology with him and using it to design
a product.

A program of work on magnetic-tape systems had been
started in the Mathematical Laboratory in the early part of
1952. At that time no work on magnetic tape was being done
in the United Kingdom, and little design information was
available. We had, therefore, to evolve our own designs for
the tape transport mechanism and for the tape servos, as
well as for the magnetic heads themselves. We had to learn
how to make stampings for the heads from sheet metal, and
then how to assemble and wind them. For driving the tape,
we developed pneumatic capstans capable of driving the
tape at 100 inches per second in either direction.! I had
much enjoyed working with Willis on magnetic-tape devel-
opment, and I felt a strong pull to design and have built in
the laboratory the tape decks for EDSAC 2. I am sure,
however, that we were right to buy the Decca units, which
served us well.

In IBM systems, information was written onto magnetic
tape in a continuous stream of arbitrary length and termi-
nated by an end-of-record marker. EDSAC 2 followed the
alternative plan, in which the tapes were marked out in
advance into addressable blocks. Information could be writ-
ten into a specified block, and at a later time could if desired
be overwritten by other information. An interrupt system,
based on one that we had experimented with on EDSAC1,
enabled the tape to be positioned ready for a given block to
be written or read while other computation was in prog-
ress.!! These facilities enabled the tape system to be used as
an addressable auxiliary store. Since there was no drum or
disk, this was important.

The EDSAC 2 magnetic tape system was peculiar in that
the tape was run out of contact with the heads. We adopted
this system because the magnetic tape then available was

much troubled with lumps in the magnetic oxide coating that
caused the tape, if run in contact, to jump away from the
head. Running out of contact also had the advantage of
eliminating the wear on the heads, a serious problem in
those days of soft heads and very abrasive tape. A disadvan-
tage was that the signal produced was less than with in-con-

The EDSAC 1 trace routine was
perforce interpretive and ran very
slowly. The trace routine in EDSAC 2
was implemented partly in the
microprogram and partly in the
reserved store.

tact running, although the noise level was much the same.
The idea of running the tape out of contact with the heads
was my own and was certainly successful in the context of
EDSAC 2. The motivation for it, however, went away as
improved tape and heads became available, and was wrong
in thinking that it might become generally adopted.

A larger high-speed memory

By the late 1950s, the 1,024-word high-speed memory
began to look woefully small. Much larger memories were
becoming commercially available at affordable cost, and we
longed to be able to connect one to our machine. The
problem was, of course, that there were not enough address
bits.

This situation was highly frustrating and, at first, we did
notsee that we could do anything about it. However, as time
went on, there arose in my mind the conviction that some
solution must be found, imperfect and inelegant though it
might be. Possibly it could be based on a form of indirection.
Even if two accesses to the extended memory were neces-
sary in order to reach a given target word, this would be no
disaster, since the new memory would have half the cycle
time of the existing core memory.

I eventually arrived at a proposal that I thought might be
workable. It involved using the relative addressing bit in an
instruction in a modified way, and providing a new index
register for use exclusively with the new memory. I put this
to Wheeler who, after some study, arrived at an improved
proposal that we eventually implemented.

Wheeler was able to leave unchanged the meanings of
the bits in an arithmetic instruction, except that the range of
relative addressing was restricted to the range —256 to +255.
In practice, this was no restriction, since users had always
been taught to use relative addressing for very local refer-
ences only and to use labels otherwise. It did, however, make
it possible for Wheeler to implement a system in which the
first 256 words in the new memory could be addressed
directly, and the remainder could be addressed indirectly via
those 256 words. (In fact, 512 words could be addressed
directly, but only 256 of them could be used for indirect
addressing.) Instructions were still executed out of the old

IEEE Annals of the History of Computing, Vol. 14,No. 4,1992 e 55

EDSAC 2

memory. Blocks of instructions could be held in the new
memory, but it was necessary to transfer them to the old
memory for execution.

The new memory was supplied by Ampex, who I believe
had acquired the rights from Telemeter, Inc. It had a capac-
ity of 16K words. Implementation of the interface went
surprisingly smoothly, and the new system came into use
early in 1962. 16K words may not seem much to modern
readers, but at the time users of EDSAC 2 found it almost
unbelievably large. Wheeler enhanced the initial orders to
accommodate the main memory, and it was generally agreed
that the overall scheme was not only highly effective, but
had a certain elegance after all.

he principal historical importance of EDSAC 2 is that

it established beyond doubt the technical viability of
microprogramming as the basis for a practical computer
design. The attention of IBM was drawn to EDSAC 2 by
W.S. Elliott, then head of IBM’s Hursley Laboratory, and
as a result of this contact, IBM decided to make micropro-
gramming an essential element in their System/360 imple-
mentation. My office diary records that on October 2,1961,
Cuthbert Hurd, vice president of IBM, visited the labora-
tory. Hurd did not disclose the object of his visit, but he has
since told me that it was an important factor in leading IBM
to take their decision. By the time that System/360 was
announced in 1964, transistors had come into general use,
and microprogramming was economically, as well as techni-
cally, viable.

I regard the bit-sliced packaging used in EDSAC 2 as
technically very successful, but in this case, the coming of
transistors with their different packaging requirements
robbed it of any immediate future it might otherwise have
had. Bit-slicing was not heard of again until it was reinvented
much later in the context of microcomputers based on the
LSI technology of the mid-1970s. |

Acknowledgments

The construction of EDSAC 2 was made possible by a
generous grant from the Nuffield Foundation. Apart from
myself, the principal members of the project team were W.
Renwick (chief engineer), D.J. Wheeler (responsible for the
design of the instruction set and programming environ-
ment), and E.N. Mutch (project manager).

In writing this account, I have drawn on laboratory ar-
chives, on my own recollections, and on the recollections of
surviving members of the team. I am particularly grateful to
K.O. Cox, now chief engineer of the Cambridge University
Computer Laboratory, for information about the off-line
test equipment.

References

1. M.V. Wilkes, Memoirs of a Computer Pioneer, MIT Press,
Cambridge, Mass., 1985.

2. M.V. Wilkes, “The Best Way to Design an Automatic Comput-
ing Machine,” Manchester University Computer, Inaugural
Conference, July 1951, pp. 16-18; reprinted in Annals of the
History of Computing, Vol. 8, 1986, pp. 118-121, and in The

Early British Computer Conferences, M.R. Williams and M.
Campbell-Kelly, eds., Charles Babbage Inst. Reprint Series for
the History of Computing, Vol. 14, MIT Press, Cambridge,
Mass., and Tomash Publishers, Los Angeles, 1989, pp. 182-184.

3. M.V. Wilkes, Automatic Digital Computers, Methuen, London,
1956.

4. M.V. Wilkes, W. Renwick, and D.J. Wheeler, “The Design of
the Control Unit of an Electronic Digital Computer,” Proc.
IEE, Vol. 105B, 1958, pp. 121-128.

5. M.V. Wilkes, M. Phister, and S.A. Barton, “Experience with
Marginal Checking and Automatic Routining of the EDSAC,”
IRE Convention Record, Part7,1953, p- 66. Also in Int’l Symp.
Automatic Digital Computation, National Physical Laboratory,
Mar. 1953, pp. 16-18; reprinted in The Early British Computer
Conferences, M.R. Williams and M. Campbell-Kelly, eds.,
Charles Babbage Inst. Reprint Series for the History of Com-
puting, Vol. 14, MIT Press, Cambridge, Mass., and Tomash
Publishers, Los Angeles, 1986, pp. 446-452.

6. MLV. Wilkes, “Pure and Applied Programming,” Proc. ACM
Nar’l Conf. (Toronto, Sept. 1952), ACM, New York, 1952, pp.
121-124.

7. M.V. Wilkes, “The Use of a ‘Floating Address’ System for
Orders in an Automatic Digital Computer,” Proc. Cambridge
Philosophical Society, Vol. 49, 1953, pp. 84-89.

8. University Mathematical Laboratory, Programming for
EDSAC 2, Cambridge, UK, 1958, 2nd edition 1959, pp. 56-57.

9. CJ. Bashe et al., IBM’s Early Computers, MIT Press, Cam-
bridge, Mass., 1986, pp. 349-354.

10. M.V. Wilkes and D.J. Wheeler, “Auxiliary Storage on Magnetic
Tape in EDSAC 2,” Congresso Internacional de Automatica
(Madrid, 1958), 1961, p. 185.

11. M.V. Wilkes and D.W. Willis, “A Magnetic Tape Storage Sys-
tem for the EDSAC,” Proc. IEE, Vol. 103B, Supplement No.
2,1956, pp. 337-345.

Maurice V. Wilkes received a PhD from
Cambridge University in 1936 for a thesis
on the propagation of very long radio
waves in the ionosphere. In 1937, he was
appointed to a junior faculty position at
Cambridge in connection with the estab-
lishment of a computing laboratory. He
left for war service on the outbreak of
war in 1939 and worked in radar and operational research.
When he returned to Cambridge in September 1945, he was
appointed head of the laboratory. He was responsible for
the construction of the EDSAC, which was running in June
1949, and later for the construction of EDSAC 2. He left the
Computer Laboratory in 1980, and joined the central engi-
neering staff of Digital Equipment Corp. in Maynard, Mass.
Returning to England in 1986, he became Member for
Research Strategy on the Olivetti Research Board. He is
now a consultant to Olivetti.

Wilkes can be reached at Olivetti Research Ltd., 24A
Trumpington Street, Cambridge CB2 1QA, UK.

56 e IEEE Annals of the History of Computing, Vol. 14, No. 4, 1992

