1s¢ Edition
2nd Edition
3rd Edition

August 1958
December 1959
September 1962

Ld T
. o
e o

.

*
gt

P

) Togi

PREFACE

Part 1 of this booklet contains a general introduction to the
more important features of the order code of EDSAC 2 and to the
programming facilities provided. It is designed to be read by the
beginner. Those with experience of programming for other
machines will find that they can read Part 1 rapidly.

For many problems a simpler system of programming known as
Autocode will suffice. Details of this will be found in 4 Beginner’s
Guide to the EDSAC 2 Autocode by R. K. Livesley, and EDSAC 2
Autocode Programming Manual by D. F. Hartley. Both these
documents are available from the Mathematical Laboratory.

Part 2 contains full details of the order code, the facilities provided
by the program assembly routine, the error diagnosis facilities, and
details of the peripheral equipment. It is intended for reference
rather than for continuous reading.

EDSAC 2 was built with the aid of a generous grant from the
Nuffield Foundation. I would be glad to hear of any errors or
omissions that readers may notice in this booklet.

M. Y. WILKES
Director

Part 1

INTRODUCTION TO PROGRAMMING FOR
EDSAC 2

1 INTRODUCTION

From the point of view of the programmer the main units of a
digital computer such as EDSAC 2 are the store, the arithmetic unit,
and the inpur and output mechanisms. A calculation intended to be
performed by the machine must be expressed as a sequence of
operating orders or instructions, each calling for one of the elementary
operations (such as addition or multiplication) that can be per-
formed in the arithmetic unit. The complete schedule of orders is
called the program.

The store is used to hold both the numbers needed during the
course of the calculation, and also the orders comprising the pro-
gram. This is made possible by expressing the orders in a coded
numerical form. In EDSAC 2 there are in fact four stores, although
only one of them—the free store—need concern the newcomer to
programming.

2 THE FREE STORE

The free store* consists of 1024 registers each capable of holding
one number or two orders. A single order thus occupies a Aaif-
register or storage location. For purposes of identification each
half-register is labelled by a number called its address; these
addresses run from 0 to 2047 and the addresses of the two half-
registers forming a whole register are always an even number and
the odd number following it—that is, 2¢ and 2¢ + 1 where g is an
integer. The whole register is referred to by the even address 2g.
This leads to no confusion since it will be found that it is always
clear whether we are talking about a half-register or a whole register.
It is sometimes convenient to use the term word to describe the
content of a register without specifying whether it is a number or
a pair of orders. The notation C(g) will be used to denote the
content of half-register ¢, and F(gq) for the content of register ¢; in
the latter case ¢ must be even.

* Abbreviated to ‘‘the store™ throughout the remainder of Part 1 of this
booklet.

5

3 THE ARITHMETIC UNIT

The arithmetic unit contains equipment for performing additions,
subtractions, multiplications and divisions, and is thus analogous
to a desk calculating machine. It contains a register which plays
the part of the result register in such a calculating machine. This
register is known as the accumulator since the cumulative sum of
a sequence of numbers can be formed in it. The content of the
accumulator will be written F(Adcc). Ordinarily, the effect of any
arithmetic operation is to change the value of F(Acc).

4 InpuT AxND OUTPUT

The principal input and output medium of EDSAC 2 is punched
paper tape. The machine is equipped with two photo-electric tape
readers for taking information into the machine, and with two out-
put punches for punching the results. Output tapes from these
punches are passed into a mechanical tape reader controlling a
teleprinter which gives a printed statement of the results obtained.
Input tapes are prepared on a keyboard perforator and must have
punched on them not only the program, but also any numbers which
may be required by the machine during the course of the calculation.

5 NUMBERS

In all digital computers some restriction is imposed on the range
of values which numbers may fake. In EDSAC 2 we normally
work with floating-point numbers which must lie (roughly) within the
range —10%° < x < 10%; each number is expressed with a precision
approximately equivalent to 9 significant figures. It is also possible
in EDSAC 2 to work with fixed-point numbers which lie in the
range —1 < x < 1 and have a precision of approximately 12 deci-
mals, but this facility will not be made use of in Part 1 of this booklet.

6 OrDER CODE

In order to be able to write programs for a specified machine
a programmer must have a knowledge of its order code; that is, he
must know what are the various elementary operations that the
machine can perform, and how they are called for. Orders in
EDSAC 2 are of the one-address type; that is, each order which
refers to the store (some do not) refers only to one register in the
store. In the following sections the various available orders are
introduced gradually so that the reader will become accustomed,
by practice, to some of the more commonly used orders without
having to master the whole order code at once. The complete
order code is given for reference in Part 2, Chapter 2.

6

7 STORAGE OF ORDERS

~ Orders are normally placed in the store in half-registers numbered
in the sequence in which the orders are to be obeyed. The machine
is so designed that, after the order in half-register g has been executed
the order in half-register ¢ + 1 is taken next unless the order iI;
half-register g has specified otherwise (see Section 10).

8 WRITTEN FOoRM OF ORDERS

When‘ orders are written, the function and the address are written
as two integers, normally separated by the letter /. The written
?o;'lms of some of the more important arithmetic operations are as
ollows:

10 fq place 1n the accumulator the number in storage register g.

11 fq place in the accumulator sminus the number in storage
register g.

12fg add to the number in the accumulator the number in
storage register g.

13 fg sul?tract from the number in the accumulator the number
in storage register g.

14 fg mglﬁply the number in the accumulator by the number

_in storage register 4.

15 fq divide the number in the accumulator by the number in
storage register g.

19 fq copy the number in the accumulator into storage register g.

In all these, g stands for the address of a whole register in the
§tqre—that is, g is an even integer in the range 0 to 2046 inclusive;
1t is called the address part of the order. For orders with functior;
numbers 10 to 15 the result of the operation is placed in the
accumulator.

The contents of the store are not affected by any of these orders
except the order with function number 19, and this order does noi,:
change the content of the accumulator.

An order with function number x is usually called an x order.

. The 10 order is said to set F(g), the number in storage register g
in the accumulator; similarly, the 11 order is said to set —F(g) it,l
the accumulator. These orders are sometimes referred to as “‘clear
and add” and “clear and subtract™ orders. They delete the previous
content of the accumulator, and this is lost unless a copy has pre-
viously been placed in some register in the store.

9 SoME SIMPLE EXAMPLES

We are now able to write down the sequences of orders required
to perform some) simple calculations. These orders are to be
thought of as forming parts of larger programs; it is assumed that the

7

I Ire oy g U SRR T

1
i
i
F

numbers they operate on have been calculated and placed where they
are at an earlier stage of the work. For the reader’s convenience
we note, with each order, the operand (that is, the number in the
store to which the order refers) and also the number in the accumu-
lator after the order has been obeyed. This information is included
purely for purposes of explanation and does not form part of the
program as it would be read into the machine.

In writing our sequences of orders we draft them in such a way
that the required calculation is carried out regardless of the content
of the accumulator before the first order of the sequence is obeyed.
This usually requires that the sequence starts with a 10 or 11 order.

Example 1. Given x = F(200),
y = F(202),

(that is, the numbers x and y are in registers 200 and 202 respectively)
to form x -+ y and place it in 204.

Order Operand F(Acc)
10 1200 X x
12 7202 ¥ x+y
19 £204 x+y x4+ y.

Since the machine takes orders in sequence from the store these
orders must be placed in successive half-registers; thus, if the first
is placed in half-register 100, the second and the third will go into
half-registers 101 and 102 respectively. We thus have:

Storage location Order
100 10 1200
101 12 202
102 19 204
Example 2. Given a = F(300),
b = F(302),
. x = F(350),
y = F(352);
to place ax in 420 and y{ax -+ by) in 430.
Location Order Operand F(Acc)
100 10 £350 x x
101 14 £300 a ax
102 19 £420 ax ax
103 10 £302 b . b
104 14 f352 ¥ by
105 12 420 ax ax + by
106 14 £ 352 ¥ yax + by)
107 19 430 wax + by) wax + by).

8

10 JuMPr ORDERS

Any order which can make the machine depart from its normal
procedure of obeying orders in the sequence in which they stand in
the store is known as a jurmp order. A jump order can be uncon-
ditional or conditional. The effect of an unconditional jump order
with address part ¢ is to make the machine start to execute a new
sequence of orders beginning at half-register ¢ (*jump to ¢ or
“transfer control to ¢”*). A conditional jump order causes a jump
only if a certain condition (depending on the particular jump order
concerned) is satisfied; otherwise, the machine proceeds serially in
the normal manner.

An unconditional jump order is:

50 f¢ jump to g; that is, execute next the order in g.

Two of the most common conditional jump orders, in which the
criterion for a jump depends on the sign of the number in the
accumulator, are as follows:

54 fg jump to g if F(dcc) > 0; otherwise proceed serially.
55fg jump to g if F(dcc) < 0; otherwise proceed serially.

It will be seen that these two conditional jump orders are comple-
mentary. One would be sufficient, but it is much more convenient
for the programmer to have both available.

Example 3. If x = F(200) is negative, replace it by 0; otherwise
leave it unchanged.

Location Order
100 10 £ 200
101 54 £103
102 13 £200
103 19 £ 200

In this small program the sequence of orders performed by the
machine is different according as x > 0 or x < 0. If x> 0 the
number in the accumulator is positive or zero when the 54 order is
encountered. This is the condition for a jump, and the machine
therefore jumps to the address specified in the 54 order, that is,
to 103. The effect is to omit the order in 102. If x << 0 the 54 order
does not cause a jump and the order in 102 is executed.

11 Use oF PARAMETERS AS LABELS

In order to be able to write the correct address in a jump order
the programmer must know the number of the half-register in the
store which contains the order to which he wishes the machine to
jump. When the first draft of a program is being written, this

9

information may not be available, since the programmer may not
have decided where the various sequences of orders should go in
the store. A very convenient facility is provided with EDSAC 2
whereby the order to which a jump is to be made may be given a
label, and a reference to this label written in the address part of the
jump order instead of the actual address. Labels are written after
the orders to which they refer, and consist of a left-hand bracket
followed by a number lying between 3 and 127 inclusive. In the
address part of the jump order the number in the label appears
preceded by the letter p, and is referred to as a parameter. If a label
is used the sequence of orders in Example 3 may be written as
follows:

Example 4. 10 200
54 p99
13 200
19 £200 (99

Here the label 99 has been given to the last order, and the corre-
sponding parameter p99 appears in the address part of the 54 order.
Note that the letter / which normally follows the function digits
may be omitted before a parameter. When parameters and labels
are used, there is no need to write by the side of each order the
number of the half-register in the store in which it is placed, and this
will not be done in future.

When a program is read into the store of the machine from the
program tape, parameters appearing in the address parts of orders
are automatically replaced by the correct absolute addresses. The
parameters and labels have then served their purpose and they do
not correspond to anything remaining in the store of the machine
after the reading process is complete. One consequence of using
parameters and labels is that the programmer need have no know-
ledge of the actual registers in the store into which individual orders
go; provided that the cross-referencing between the parameters and
labels is correct, and provided that no part of the program is over-
written by succeeding parts, the program will operate correctly.
Details of the way in which a program tape is made up will be given
later, together with information about further uses which may be
made of parameters.

12 CycLes oF ORDERS

Many long calculations involve repeated application of the same
group of orders to different sets of numbers. Such a repeated group
of orders is called a loop or cycle. The number of times a cycle
has to be repeated may be known in advance or may depend on the
numbers produced in the course of the calculation. In either case

10

the cycle must include at least one jump order so that the machine
can return from the end of the cycle to the beginning; moreover,
it must include at least one conditional jump order since otherwise
it will be impossible for the machine ever to leave the cycle.

An example of a short loop in which the number of repetitions is
not known in advance, but is controlled by the results of the calcula-
tion, is the following:

Example 5. Register 104 contains the number —x, and register
102 contains y; x and y are both positive. Add y to —x repeatedly
until the result becomes positive (or zero); place the result in 104.

Order Operand FlAce)
10 104 —X —X
>12 £102 (99 ¥ — x4y, —x+2y —x+3...,
[successively
-55 p99 —x 4y, —x+ 2y, —x+3 ...,
successively
19 104 final value of —x -+ my.

The 55 order causes a jump back to the previous order if the content
of the accumulator is negative; when the cycle has been repeated a
sufficient number of times the number standing in the accumulator
when the 55 order is encountered will be positive and the machine
will proceed serially to the following order which places the required
result in 104,

A procedure of this kind could be used for reducing a large
negative angle to the range 0 to 27 by successive addition of 2.
Note that the conditional jump for leaving the cycle is in this case
also the jump which causes the cycle to be repeated.

The following is a less trivial example of a process in which the
number of repetitions of a cycle depends on the results obtained as
the calculation proceeds.

Example 6. Given x = F(200),
a = F(300),
where) < @ << x < 1, form thesum of the series x 4+ x2 4+ x3 ...,
up to (but not including) the first term which is less than a, and
place the result in 202.

We shall build up the sum term by term in 202, so that when the
calculation is complete the result will already be in that register, as
required. We shall also need to keep a record of x", the term last
added to the sum, in order to form x**!, the next term; let x" be
kept in 204. If we start with x in both 202 and 204, we want the
cycle to be such that, at the end of » repetitions, x**! is in 204 and
x4+ x2+ ...+ x*1lisin 202. For brevity we shall write S, for
the sum of » terms, so that

Sn+1 = Sn + x"+1-
11

The orders required are as follows:

Order Operand F(Ace)
10 200 x x
19 £202 x x
19 £204 x x
—> 10 1204 (99 x" x"*
14 £200 x s
19 £204 x"+1 xrl
13 1300 a xl g
-55 p98 ¥l g
10 £ 204 x+1 X1
12 £202 A S, +xtl=8,.,
19 £202 St Syo1
—-50 p99 Spai
Lo (98

The 55 order is used to test whether the condition for leaving the
cycle is fulfilled. This condition is x"+! — g < 0 and a jump occurs
ifitis satisfied. If the condition is not satisfied, the machine proceeds
serially and forms S, by adding x"+! to §,. The 50 order then
causes an-unconditional jump back to the beginning of the cycle.

In this example, the jump order which returns from the end of
the cycle to the beginning is not the same as the conditional jump
order which tests whether the cycle is to be repeated. The reader
will find that this is often the most convenient way to write a pro-
gram although it may not appear to be the most economical in
orders. The first three orders are not performed repeatedly and do
not belong to the cycle proper. They are needed to set up the initial
values of the quantities used in the cycle. Almost all cycles need a
“prologue” of this nature; many of them also need an “epilogue.”

- For instance, if we had required the sum to be in the accumulator
at the end of the calculation, we could have placed the order
10 £202 immediately after the 50 order in the above program.
In writing a program, it is often convenient to write the orders of
the cycle first and then to add any preliminary or final orders that
may be required.

13 CycLEs OF ORDERS WITH A COUNT

In the last example the number of terms of the series we had to
take could not be predicted in advance. We might instead wish to
take a definite number, say 50, terms of the series. One way of
doing this would be to place somewhere in the store a number equal
to the number of cycles to be performed, and to subtract one from
this number in the course of each cycle. We would arrange to leave

12

the cycle when the number became zero. While counting in this
way, using one of the ordinary registers of the store, would be
perfectly possible, counts of this type are so frequently required that
the machine is provided with two special registers which can be
used for the purpose. They are known as modifier registers, for
reasons which will appear in the next section, and are distinguished
by being referred to as the s register and the f register. Their contents
are integers which are denoted by s and ¢ respectively. The opera-
tions involving these registers will be explained in terms of the
s register; similar statements with ¢ substituted for 5 apply to the
¢ register.
Orders which set the value of s are as follows:

70 s ¢ place the integer g in the s register.
71 sq place the integer —g in the 5 register.

Note that g here stands for a number and does not refer to the
content of storage register g as it does in the orders described earlier.

It is usually convenient (for reasons which will appear in the
next section) to count in multiples of 2; for this purpose we require
means of increasing or decreasing s by 2, and we also require a
conditional jump order which tests the value of 5. Both the increas-
ing or decreasing of s and the testing can, in fact, be done by one
order:

74 5 ¢ increase s by 2; if the new value of s is 0 proceed serially,
if not jump to 4.

75 sq decrease s by 2; if the new value of sis 0 proceed serially,
if not jump to g.

The definitions here given of these two orders assume that the
register s originally contained an even number; more complete
definitions are given in Part 2. Counting, with the aid of these
orders, is extremely simple. If we have a sequence of orders which
we wish to be repeated, say, fifty times, all that we need to do is to
place in front of the sequence a 71 order which sets —100 in the
s register, and at the end of the sequence a 74 order which causes a
conditional jump back to the first order of the sequence; thus:

71 5 100
....... (99
....... orders to be repeated
....... 50 times.
74 5 p99
13

Altgmatw;ly, we may make use of a decreasing count instead of
an 1ncreasing count:

....... 99
....... orders to be repeated
....... 50 times.

Example 7. Given x = F(200), form the sum
x+ x4 ...+ x50

place the sum in 202.

In this example, it will be convenient to use the following order,
which has the effect of clearing a given storage location:

9fq clearg; thatis to say, set F(g) = 0.

‘Note that this order does not affect the content of the accumulator.

.A sequence of orders for performing the required calculation is
given below.

Order Notes

71 5100 set count (counting upwards)

9 f202 clear 202
10 £200 put x in accumulator (as initial value of x™)
50 po8 jump into cycle
10 £204 (99
14 £200 .
19 7204 (98 cygle of orders which lafids %" to partial sum
127202 in 202 on nth repetition.
19 £202
74 5 p99 count.

14 AUTOMATIC MODIFICATION OF ORDERS
It often happens that a group of orders has to be repeated a

qumber of times with slight and systematic changes on each repeti-
tion. These changes will normally be in the address parts of some
of the orders. For example, suppose we have xy, . . ., x4 stored in
302,...,380and yy, . . ., ¥4 in 402, . . ., 480, and we wish to form
X1 4 . ..+ x40¥40 in 200. This can be done by repeated applica-
tion of the cycle of orders given below provided that the address
parts of the first two orders can be increased by 2 on each repetition
so that, on the sth repetition, they have the values shown. S, is

14

written for the sum up to and including x,,, and it is assumed that
storage register 200 is clear at the beginning.

Order Operand FlAcc)
10 £300+ 20 X, X
147400 =21y, Xn¥n 1
12 £200 Sp_1 Xp¥e + Sac1 = S
19 £ 200 S, S,

It will be observed that the increment in the address parts of the

first two orders on each repetition is 2; this is the same as the

increment in the number in the s register if we use that register
for counting and count up in steps of two.

EDSAC 2 is provided with a facility whereby an order may be
modified (before being obeyed) by having the content of the s (or #)
register added to its address part. In the written form of the order
this requirement is indicated by using the letter s (or), instead of f,
to separate the function and address parts of the order. It must
be understood that the order in the store is not altered in any way;
the modification takes place in the control unit of the machine on
each occasion before the order is executed. The following example
shows how the order modification facility may be used in the
calculation described above:

Example 8. Given xy, . . ., X stored in 302, . . ., 380,
F1s - - ¥ao Stored in 402, . . ., 480,
to form ¥ "I‘ ot Xao¥ao in 200.

We already know what the arithmetic orders in the cycle should
look like in the control unit before they are executed; these orders
are given in (1) above and the cycle can be built up around them
as follows:

9 200 clear 200 ready to form sum
71 s 80 set count initially at —80
10 5 382 (99
14 5482 .
12 £200 form S, in 200
19 £200
74 5 p99 count.
On the first repetition, when s = —80, the addresses in the 10 and

14 orders (as executed) are, respectively, 302 and 402; these addresses
are greater by 2 on each repetition, in consequence of s being
increased by 2 by the 74 order. When constructing a repetitive
cycle of this type, it will usually be found that the simplest way to
determine the correct addresses to write in s- or -modified orders

15

is to consider what happens when the cycle is gone through the
first time.

Note that there are two kinds of order in which s may appear,
namely, those which include a reference to s in their specification,
and those which do not. In orders of the second kind—of which
those with function numbers 9, 10, 11, 12, 13, 14, 15 and 19 are
examples—the letter s in the order indicates that the number 5 is
to be added to the address part of the order before it is executed.
In those of the first kind—of which orders with function numbers
70, 71, 74 and 75 are examples—the letter s does not denote that
the number s is to be added to the address part of the order, but
indicates that the modifier register s is concerned in some way in
the operation specified by the order. Similar remarks apply in the
case of the ¢ register. Orders of the first kind include all arithmetic
orders and some jump orders; orders of the second kind are called
modifier orders and have function numbers from 66 to 90 inclusive.

When s or ¢ is added to the address part of an order the sum is
taken modulo 2048; there is no overflow from the address part of
the order into other parts, and a meaningful order always results.

Example 9. Given a,, . . ., a stored in 300, . . ., 380
and x = F(200),
to form S=ap+ax + ...+ aux*
in the accumulator.

Here, for the first time, we meet an important point of tactics;
it is not enough to know what one wants to calculate but one must
also decide the best way in which to calculate it. One’s first idea
might be to build up the series term by term, as we did earlier in
Example 6. There is, however, a more economical way which is
indicated by writing the quantity to be calculated in the form

S = ({ [(agox + as)x + aslx + . . Jx + ag).

S can be evaluated by a cyclic process in which the arithmetic steps
in each cycle consist simply of the multiplication by x of the partial
result already obtained and the addition of a coefficient @ to the
result. When we go through the cycle the sth time, the arithmetic
orders to be executed must be as follows:

14 £200 multiply by x
12 £380 — 2n add ay_,.

The address of the second order must be decreased by 2 on each
repetition and it follows that, if we wish to use a modifier register
for modifying the addresses, as well as for counting, we must count

16

down and not up. We are thus led to the following sequence of
orders:

70 5 80 set count initially at 80

10 1380 put ay in the accumulator

14 /200 (99] multiply by x

12 5 298 and add ay_,

75 s p99 count.

15 SpeciAL ORDERS

In addition to orders of the normal type, there are provided in
EDSAC 2 certain special orders or permanent subroutines. From
the point of view of the programmer these are to be regarded as
single orders, but for engineering reasons they all have the function
number 59, and are distinguished by their address parts. The
operations they perform are more complicated than those of normal
orders. Five of them replace the number x in the accumulator by
some function of x, and are as follows:

59 11 place x? in the accumulator

59 f12 place ¢* in the accumulator

59 £13 place log, x in the accumulator
59 £14 place sin x in the accumulator

59 £15 place cos x in the accumulator,

One special order is concerned with the input of numbers:

59110 read a number from the input tape and place it in the
accumulator.

The form in which numbers have to be punched on the input tape
is discussed in Section 20.

Several special orders are concerned with the output of numbers
in various forms and with various precisions. A typical one is:

59 27 punch on the output tape the numberin the accumulator,
in floating-decimal form with 7 significant figures.

This order leaves the content of the accumulator unchanged.
Quite a wide range of calculations can be programmed very
simply with the aid of these special orders. '

Example 10. Read a number x from the input tape, calculate
¥ = e *2% and punch x and y on the output tape.
A program for performing this calculation is as follows:

5910 read x from input tape into accumulator
197 2 put x into 2 for temporary storage
59 27 punch x on output tape

17

59 F£14 form sin x in accumulator

141 2 form x sin x in accumulator

191 2 ch . £ s

17 2 ange sign of x sin x

59 F12 form y = e~* 3™ * in accumulator
59 £27 punch y on output tape.

What comes next in the program depends on what we want to do.
We may wish to read a new value of x from the tape and compute y
as before; in this case, the orders given above will be followed by a
jump order transferring control back to the beginning. If, however,
the one calculation is all that we want to do, we shall terminate the
sequence with an order which stops the machine and indicates to
the operator that the calculation is ended. This order is as follows:

101 £0 stop the machine and light the stop warning lamp.

16 PuncHED ForM OF ORDERS

So far, we have been concerned solely with the design of a
program, that is, with the writing down of the orders on paper.
EDSAC 2, however, does not respond to written symbols and, in
order to get a program into the machine, the program must first
be punched on to paper tape. The tape is of the same type as
that used in teleprinter operation and is punched on a keyboard
perforator, a device with a keyboard resembling that of a typewriter.
When a program tape has been punched, it may be passed through
a tape reader connected to a teleprinter, and the result will be a
printed copy of the program as written.

Depressing one of the keys on the keyboard causes a smgle row
of holes to be punched on the tape. In this row, there are five
positions in which holes can be punched, giving 32 possible com-
binations of holes and blanks. In addition, there is a small sprocket-
hole which helps to guide the tape through the tape reader but
which has no programming significance.

Most of the keys on the keyboard perforator have two symbols
inscribed on them, one belonging to figure shift and the other
belonging to leiter shift. One key is marked LETTERS and another
key is marked FIGURES (the latter key is also marked ERASE for a
reason which will be explained shortly). The character punched
on the tape by the depression of a particular key normally has the
significance associated with figure shift, but if the LETTERS key is
depressed, succeeding symbols have the significance associated with
letter shift up to the point, if any, at which FIGURES is punched.
CARRIAGE RETURN, LINE FEED and SPACE are common to both shifts.
A complete list of the symbols appearing on the keys, together
with the corresponding code groups punched on the tape, is given
in Appendix A.

18

Figure shift, in addition to containing the figures from 0 to 9,
includes all the small letters and symbols which are used in writing
programs (for example, f, p, 5, ¢, brackets and the decimal point).
It is not therefore necessary to make use of letter shift when punching
programs unless it is desired to include titles in the output, in the
manner described in Section 18. The figure shift symbol consists
of a row of five holes and can be used to cancel or “erase™ a symbol
punched in error. All that is necessary is to backspace the tape
and to press the ERASE (or FIGURES) key. Erase symbols on the tape
have no effect, either when a program is being printed on a tele-
printer, or when a program tape is being read into the machine
(except when printing a title—see Section 18).

A program is punched as it is written, each order being followed
by carriage return and line feed symbols. The carriage return symbol
is not there merely to help produce the required layout when the
program is printed on a teleprinter; for input into EDSAC 2 it is
necessary to have some terminating symbol at the end of each
order, and the carriage return symbol has been adopted for this
purpose. An alternative termination is provided by two con-
secutive space symbols. Care must therefore be taken not to
punch two spaces together except when they are required to indicate
the end of an order, but single spaces may be included, if desired,
to improve the appearance of the printed page. Similarly, additional
line feeds may be included for the same purpose.

17 TAPE STOP

It is sometimes desirable to cause the reading of a tape to come
to a halt while the operator takes some action. For example, a
program tape may be in two parts, and it may be necessary to stop
reading while the second tape is being put in the tape reader. The
programmer may cause this to happen by punching an asterisk on
the input tape at the point at which he wishes reading to stop. The
asterisk should follow the carriage return and line feed symbols
{or pair of spaces) terminating the previous order. The machine
may be restarted after stopping on an asterisk by raising and
lowering the RUN key.

18 TITLES

It is sometimes helpful, and reduces confusion, if identifying titles
are printed on output sheets. This is very easy to do on EDSAC 2
since facilities are provided by means of which titles may be copied
directly from the input tape on to the output tape.

A title must be preceded on the input tape by the letter ¢; the #
will not be copied on to the output tape, but succeeding symbols
will be copied until a line feed symbol is reached. If the title happens

19

to be so long that it takes more than one line of print, a ¢ must be
punched before each line. Letter shift and figure shift symbols may
be included in titles as required. If the last symbol in the title is
on letter shift, a figure shift symbol must follow it before the ter-
minating line feed, in order that the succeeding program may be
printed correctly on a teleprinter.

19 DIRECTIVES

A program punched on an input tape must be preceded by a
group of symbols which specifies where the first order is to be placed
in the store; it must be followed by another group of symbols,
which indicates that the program has been completely read in, and
which causes the machine to execute the orders, beginning with that
in a specified location. Groups of symbols punched on the tape for
these and similar purposes are called directives.

A directive which causes an order punched after it to go into
storage location g is written

pl=gq
where ¢ is an integer. Succeeding orders will go into storage
locations g -+ 1, g + 2, etc., unless another directive is encountered.

A directive which causes the machine to stop reading tape and
start executing the program, beginning with the order in storage
location ¢, is written

sq
A directive must be terminated in the same way as an order,
either by means of a carriage return and line feed or by two spaces.

Example 11. Suppose that the orders given above for Example 10
are required to go into the store, starting in half-register 100; a
complete specification for the program tape, including the directive
which sends control to the beginning and starts the program, is as
follows:

p1=100
59110
1912
59127

- 59714
1412
1952
1112
59712
59127
1010
5100
%

20

This program has been printed exactly as it would normally be
punched. The layout could be made more elegant (and brought
into line with that of programs printed elsewhere in this booklet)
by punching single spaces before certain of the characters; there is,
however, little point in doing this and it makes the program tapes
longer. Note that the final directive must be terminated by having
a carriage return, or two spaces, punched after it. In order that it
may be clear from the printed version of the program that this
requirement has not been overlooked, it is good practice to punch
an asterisk at the end of the tape, in the manner shown in the above
example.

The special directive 25/s2 must be punched at the beginning of
a program tape. This indicates that what follows is machine-code
rather than Autocode; it can be preceded by a title, but must come
before any directives.

20 PUNCHING OF NUMBERS

Numbers may be read into the machine either during the operation
of the program (by a 59 /10 order) or during the input of the
program. Numbers may, in fact, be mingled with orders on the
program tape.

Numbers must be punched on-the tape in a prescribed style and
this style is the same however the numbers are to be read, whether
during the operation of the program or during its input. Each
number must be terminated by a carriage return, or by two spaces,
just like an order.

A number may be punched as a sequence of decimal digits (one to
twelve in number), preceded by a sign, and with a decimal point in
the appropriate place. If the number is positive the sign may be
omitted, and if the number is an integer the decimal point may be
omitted. It is also possible for the number to be followed by
a power of 10 which is treated as a multiplying factor. In this
case, the last digit of the number is followed immediately by the
symbol ;o (which is a single symbol on the keyboard), and then by
the exponent. The exponent must be an integer of one or two digits,
preceded by a minus sign if it is negative. As with orders, single
spaces may occur anywhere in numbers if their presence is thought
to improve the layout, but a double space must not be punched
except as a terminating character.

Examples of numbers, as they would be punched on the tape, are
as follows:

12367
—217-42653
140—13
+17'21439109
—59432 67890

21

Note that in the third example it is absolutely necessary to punch
the 1 before the power of 10.

A number occupics a whole storage register, composed of two
half-registers of which the first has an even address. An order, on
the other hand, occupies a half-register. This is allowed for auto-
matically when numbers are read from the input tape. If a number
follows a group of orders on the tape, the number will be placed
in the first available whole register, a blank half-register being left
if necessary. Thus, if one had punched on the tape:

p1=100
1052
1274
50p3
2-78926

the three orders would go into half-registers 100, 101 and 102, while
the number would go into the whole register 104. The half-register
103 would be left unused.

A number intended to be read during the input of a program
may be given a label and referred to by means of a parameter in
exactly the same way as an order; for example, if the number in
the above example were punched as 2-78926 (90, it could be referred
to in the address part of an order by means of the parameter pS0.
In the case of numbers intended to be read by a 59 10 order,
labelling in this way is not appropriate, since a 59 f 10 order places
such numbers in the accumulator.

21 OuTPUT OF NUMBERS

1t has already been mentioned that a number may be punched on
the output tape by means of the special order 59 f27. Numbers
thus punched are in floating-decimal form with seven significant
figures; that is, when the information on the output tape is printed
on a teleprinter, the numbers will appear as in the following examples:

2-768291,,—15
—3-087124,,28

If only five significant figures are required the order 59 25 may
be used.

If 2 number is less than 10* it may be rounded off to the nearest
integer and the result printed by means of the order 59 f24.
Similarly, a number less than 10% may be rounded off, and the result
printed to the nearest integer, by the order 59 f 26.

If more than a few numbers are to be printed, their layout on
the printed page must be programmed. For this purpose there
may be inserted, in the part of the program concerned with the

22

output of results, orders for punching on the output tape symbols
for space, carriage return, and line feed. These orders are as
follows:

107 £ 2 punch on the output tape the symbol for carriage return.
107 f 8 punch on the output tape the symbol for line feed.
107 £30 punch on the output tape the symbol for space.

Note that when carriage return and line feed are both required, the
carriage return must precede the line feed, and not vice versa.

Frequently, what is required is a regular layout in which numbers
are printed in, say, ¢ columns and divided into blocks each con-
taining, say, b numbers. Facilities are provided whereby such a
layout may be preset in advance. Full particulars are given in
Part 2 (Section 3.6), but for the present the reader may like to know
that such a layout may be preset by the pair of orders

46 fq
593

where g = 100c + b. Thereafter the programmer need pay no
further attention to layout; he simply writes the output orders
necessary to punch the numbers, and the necessary spaces, carriage
returns, and line feeds will be inserted automatically.

22 LiSTING OF CONSTANTS

When a program is being written it often happens that the
occasion arises when it is necessary to use some specific number as
the operand of an order. For example, we may wish to multiply
the number in the accumulator by 360 to convert revolutions into
degrees. This can be done in a very simple manner in EDSAC 2.
The programmer merely writes the number itself as the address part
of the instruction, using an asterisk (instead of the letter f) to

separate it from the function number. Thus, to multiply the

number in the accumulator by 360 the programmer would write:
14 * 360
Similarly, to add 1-414 he would write:
12 * 1-414

When the program is being read into the machine, the various
constants which appear in orders in this way are automatically listed
in a part of the store specially set aside, and the addresses of the
registers into which they go are inserted into the orders concerned.
If the programmer takes no special action, the machine will form
the list of constants starting in storage register 2000, but the

23

T

programmer may, if he wishes, specify where the list is to start
by means of a directive of the form

72 = 1800

which would cause the first number in the list to go into storage
register 1800.

Note that only constants may be treated in this way. If a number
is to be changed during the course of the calculation, then the
programmer must arrange for it to go into some known (or labelled)
register.

23 FurTHER ORDERS IN THE ORDER CODE

This section introduces some further orders in the order code of
EDSAC 2.

The following are orders, similar to those with function numbers
10 to 13, but involving the modulus of the content of a specified
storage register:

20 fq set |F(g)| in the accumulator.

21 /g set —|F(g)| in the accumulator.

22 fq add |F(g)| to the content of the accumulator.

23 fq subtract |F(g)| from the content of the accumulator.

The following are additional jump orders:

51 fg jump to ¢ and clear the accumulator.

52 fg jump to q if the content of the accumulator is zero; other-
wise proceed serially.

53 fg jump to g if the content of the accumulator is not zero;
otherwise proceed serially.

Since the orders with function numbers 10, 11, 20 and 21 provide
means of setting the content of any storage register in the accumu-
lator, it is seldom necessary to clear the accumulator; if this has to
be done, a 51 order provides one way of doing it.

The following are additional modifier orders:

72 5 ¢ add the number g to s.

73 s g subtract the number g from s.

79 s g set the address part of the order in location ¢ equal to s.
80 5 g set s equal to the address part of the order in location g.

There are similar orders, containing ¢ instead of s, which concern
the ¢ register. Orders with function numbers 79 and 80 are useful
for temporary storage and replacement of the content of a modifier
register if this register is required for another purpose in the course
of a calculation.

It is sometimes necessary to halt the machine temporarily, for

24

instance to give time for a new tape to be put in the tape reader.
For this purpose we have the order:

102 f0 wait until the machine is manually restarted.

24 EXPLICIT SETTING OF PARAMETERS

We have already seen how the labelling of an order or a number
sets the corresponding parameter to a definite value. An alternative
way of setting a parameter is by means of a directive of the form

210 = 1000

Any parameter up to p127 may be set in this way. It will be noted
that the above directive is of the same form as those used to set pl
and p2 and, in fact, pl and p2 may be regarded simply as parameters
which have special functions in relation to input. The value of pl
is increased by unity each time an order is read from the tape, and
by two each time a number is read from the tape. During the
reading of the tape, therefore, p1 continually records the address of
the next half-register or register to be filled. The value of p2 is
increased by two each time a fresh constant is added to the list.

25 ADDING OF PARAMETERS TO ADDRESSES

If the address part of an order consists of an integer followed by
a parameter, the value of the parameter will be added to the integer
during input to form the address part of the order as it is stored in
the machine. For example, the address part of an order punched as

19 f2p21
would go into the store with its address part equal to
2 4+ (value of parameter p21).

This facility is quite useful, since it enables the programmer to refer
to individual members of sequences of numbers without labelling
each one, it being sufficient if the first of the sequence is labelled.
It also enables the amount of labelling of orders in a program to be
reduced, but here the programmer is advised to make use of the
facility sparingly or he will find that, when he comes to make
corrections or modifications to his program, he has to pay careful
attention to the cross-referencing.

A parameter may be used any number of times in the address
parts of orders which are read into the machine before it is set.

26 Use OF PARAMETERS IN DIRECTIVES
Parameters may be used in directives in the same way as they
are used in the address parts of orders. One may, for example,
write
p21 = plo
25

o

which would cause the parameter p21 to be set to the same value
as pl0. It is necessary that pl0 shall have been set to a definite
value before this directive is reached on the program tape. One
can also write

p20 = pl

which causes p20 to be set to the current value of pl, that is, to the
address of the storage register into which an order immediately
following on the tape would go. Conversely, it is permissible to
write
pl = p20

which would have the effect of causing the following orders punched
on the tape to go into the store, starting at the half-register whose
address is equal to p20.

Modified parameters may be used in directives in the same way
that they may be used in the address parts of orders; for example,
one may write

P21 = 2p20

which would set p21 to the value (2 + value of parameter p20).
Similarly,
5 2pl0

would cause the reading of the tape to be halted, and control sent
to location (2 + value of parameter p10).

Parameters may only be used to set other parameters, or in s
directives, if they are set at an earlier point on the input tape.

27 SUBROUTINES

A subroutine is a self-contained group of orders for performing
some calculation, more or less complete in itself, which forms part
of a larger calculation. The group of orders required to evaluate
a power series (Example 9) could be regarded as a subroutine,
although it is perhaps too short for this to be worth while. A more
realistic example would be a group of orders for inverting a matrix,
or for evaluating some special function required in a particular
problem.

A typical program consists of a collection of subroutines together
with a master routine. At the beginning of the calculation, control
is sent to the master routine, which contains the orders required for
the general organization of the calculation and for calling into action
the various subroutines as they are required. The master routine
is thus responsible for organizing the calculation on the highest
level, while the subroutines look after the details.

A programmer obtains two advantages by making use of sub-
routines. In the first place, the breaking up of a long program into

26

a number of self-contained functional units makes it easier to write,
easier to check, and easier to modify if required. Often, subroutines
can be tested by themselves before being incorporated into the
program. The second advantage arises from the fact that quite a
number of calculations of the type that can be performed by a
subroutine turn up repeatedly in different problems. It would
obviously be a waste of time if each programmer had to devise a
set of orders for performing them; this is avoided by having a fibrary
containing subroutines for the more common operations. Library
subroutines are carefully tested before being placed in the library,
and the programmer can normally rely on their not containing any
mistakes. They are stored on short lengths of punched paper tape
which can be copied mechanically on to a program tape.

The subroutines in the EDSAC 2 library are designed in such a
way that the programmer may place them wherever he wishes in the
store without regard to the location of the master routine. A sub-
routine is entered, when required, by means of a jump order in the
master routine and, when the subroutine has done its work, control
is returned to the master routine by another jump order (sometimes
called a Jink) in the subroutine. In order to standardize and make
automatic the process of entering and leaving a subroutine, two
special orders are provided in the order code of EDSAC 2; their
function numbers are 58 and 60. Subroutines using these orders
for entering and leaving are of the type called closed. For many
purposes the programmer need not know the exact specifications
of the 58 and 60 orders. It is sufficient for him to have the following
partial descriptions:

58 fq enter the closed subroutine, of which the first order is in
location 4.

60 70 return from a closed subroutine to the location in the
master routine immediately following the 58 order
which called in the subroutine. Restore s to the value
it had before the 58 order was executed.

Note that, in contrast to everything which has been described
earlier, s and z are NOT treated symmetrically by these orders.
The content of the 5 register is always restored to its original value
on exit from a subroutine, whereas the content of the f register is
not so restored unless steps to that end have been taken by the
designer of the subroutine. A more circumstantial account of the
action of the 58 and 60 orders is given in the next section.

Although he is not compelled to do so, the programmer will
usually find it convenient to write his program in the form of a
relatively brief master routine, together with a number of closed
subroutines. Some of these subroutines he will have to make
himself; for others he will be able to draw on the library.

27

28 ENTERING AND LEAVING A SUBROUTINE
The actions performed by the 58 and 60 orders are as follows:

58 g if r is the location of this order, place 0fs in 0 and
0f(-+ 1)in 1; jump to q.

60 f0 set the value of s equal to the address part of the order
in 0, and jump to the address specified by the address
part of the order in 1.

Since register 0 is used by the 58 and 60 orders, it should not
normally be used for any other purpose inside a subroutine. Special
steps must, however, be taken if it is necessary for one closed
subroutine to call in another closed subroutine. One simple pro-
cedure is to copy the contents of register 0 into some other register
in the store immediately after the first subroutine is entered.
Register 0 is then available for use by the second subroutine and
can have its contents restored to their original value immediately
before the 60 f 0 order at the end of the first subroutine is encoun-
tered. The first subroutine would then be constructed as follows:

100 .

1972 |coPY contents of 0 into 2

58 f¢ jump to second subroutine starting at g
0727 . iy

1970 reinstate original contents of 0

60 f0 return to master routine.

28

Part 2

A PROGRAMMERS’ GUIDE TO

EDSAC 2

CHAPTER I
GENERAL INFORMATION

1.1 Tue FREE STORE

The free store of EDSAC 2 consists of 2048 half-registers or
storage locations each with capacity for 20 binary digits. A half-
register is capable of holding one order. The half-registers may be
combined in pairs to form registers; each register has capacity for
40 binary digits and is capable of holding one number.

Each half-register has an address in the range 0 to 2047. Two
half-registers which are combined to form a register must have con-
secutive addresses, the lower one being even (for example, 2 and 3,
but not 3 and 4). The register may be referred to by either of these
addresses, but it is customary to use the lower (even) one.

The digits of register 1, starting at the more significant end, will
be denoted by g, My, . . ., M3, The digits my, . . ., my, form the
half-register with the lower (even) address; the digits mag, . . ., 39
form the half-register with the higher (odd) address.

The free store is so named because its contents can be altered
freely by the programmer. It was the original high-speed store of
the machine, and is still the principal working store, used by all
programis.

[.2 THE RESERVED STORE

In addition to the free store there is a store of similar size and
speed whose contents are available to the programmer but which
cannot be directly altered by him. This is called the reserved store.
Its primary purpose is to contain certain permanent subroutines
(see Chapter 3) and some error diagnosis routines (see Chapter 5).

29

1.3 THE MAIN STORE

In January 1962 a further high-speed store was added to EDSAC 2.
This is called the main store, and consists of 16,384 registers
numbered 0-16,383 (counting in' ones, since half-registers in this
store are not considered as separate entities).

The main store cannot be used without the free store, but the free
store (and reserved store) may still be used without the main store.
Programming conventions for the main store differ in some details
from those for the free store. Full details will be found in the
document, Programming for EDSAC 2 with Main Store, by D. W.
Barron, which was issued in February 1962, Copies of this docu-
ment are obtainable from the Mathematical Laboratory. '

Part 2 of this booklet refers to the programming system and
conventions adopted for the free store unless otherwise specified.
For completeness, however, orders relevant only to the main store
are included in the full order code on pp. 35-42.

1.4 REPRESENTATION OF NUMBERS

In EDSAC 2 numbers may be represented either in fixed-point
- form or in floating-point form. In fixed-point form the number in
register m, which is denoted by N(m), is defined as

39
Nim) = — my + 327'm,.
1

It follows that the first digit plays the role of a sign digit and that
the binary point comes immediately after it. A fixed-point number
x must always lie in the range —1 < x < 1.

In floating-point representation the number in register 72, denoted
by F(m), is of the form F(m) = x.22; here p is an integer satisfying
—128 < p < 128 and x lies in the range —1 < x < 1. The first
32 digits in register m, interpreted as a fixed-point number, give the
value of x; thus

3
x=—nmp+ X27m,.
1

The last eight digits in register m, interpreted as a binary integer,
give the value of p -~ 128; that is

39
p= 22¥"'m, — 128.
2
The floating-point representation of a number is not unique, and
one representation is taken as the standard form. The standard
form of a non-zero number is that in which 1< x <1 or
—1 < x << —%. The standard form of zero is 0.2-128; it will be
observed that the fixed- and floating-point representations of zero

30

are identical. When arithmetic operations are performed on
floating-point numbers in EDSAC 2 the results are always left in
standard form.

A non-standard positive number is treated as zero by orders 11-18,
20-23 and 25. A non-standard negative number causes a report
(in which the accumulator content is 0.27!2%) if used as operand
by these orders. Note that this means that an attempt to use tl}e
content of a cleared-to-ones register as a floating-point number will
lead to a report. See Section 5.2 for a full description of the report

facility.

1.5 REPRESENTATION OF ORDERS

An order consists of 20 binary digits. Of these the ﬁrst‘ two give
the modifier letters (see Section 2.1) according to the following table:

Modifier letters

(as punched on tape) Binary digits
forsr 00
Fortr 01
s 10
t 11

The next seven digits give the function number represente_d as a
positive integer in binary form. These digits, together with the
modifier digits, constitute the function part of the orfier. The last
eleven digits constitute the address part. The notations f(m) qnd
a(m) will be used for the integers given respectively by the function
part and the address part of an order; thus

0 < f(m) < 512, 0 < a(m) < 2048.

1.6 THE ARITHMETIC UNIT

The arithmetic unit contains three registers, X, L, and M, each
of 40 binary digits and each capable of holding a number in the
same way as is described above for storage registers: For many
fixed-point calculations, registers M and L are combined to form
a single 79-digit register which is called the (double-length) accumu-
lator: it is often referred to as register 4. In combining the registers
M and L the sign digit of L is ignored and the remaining 39 digits
of L are attached to the less significant end of M. Thus

39 39 .
N(A) = _MD -+ ;Z—im + ?2—39_114.

It is convenient also to have a notation for the number that would
result if N(4) were rounded off to a single-length number; we
therefore write

N(d)g = N(M) + 2-%L,.
31

If we have N(M)=1-2-%3 and L, = 1, this would give N(A)z =1,
which cannot be stored as a fixed-point number; to avoid this
inconvenience we write in this anomalous case N(A)g = 1-2-%,

Apart from its use as part of the double-length accumulator, L is
used to hold the quotient after division with remainder (order 45).
Register X is used for accumulative multiplication (orders 16, 17,
24, 36, 37 and 44), and during transfers from magnetic tape.

1.7 THE OveErRFLOW FLiP-FLOP

Overflow is said to occur when the correct execution of an order
would give rise to a number lying outside the permitted range. In
such cases the result actually formed will be incorrect and it is
desirable that an alarm should be given. EDSAC 2 is provided
with a flip-flop called the overflow flip-flop which records whether
an otherwise undetected overflow has taken place. The overflow
flip-flop is capable of storing a single binary digit denoted by «;
o = 1 if overflow has taken place and « = 0 otherwise. o is set
to 1 by overflow resulting from any of the following orders:

6, 9,11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 25, 31, 32, 33, 34, 35,
36, 37, 38, 40, 42, 43, 45, 96;

o is also set to 1 by a 15 order if the operand is not in standard
form. «is set to 0 by any order (except 62) which obliterates the
previous content of M, that is by any of the following orders:

10, 11, 20, 21, 26, 30, 31, 40, 41, 46, 51, 100, 110, 120.

(Note that orders 11, 20, 31, and 40 appear in both lists; these
orders initially set « = 0 but may then cause an overflow and
set « = 1.) Orders 56 and 57, which enable the programmer to
test the value of o, also set « = 0. If « = 1 an attempt to place a
number in the store by one of the orders,

8, 18, 19, 38, 39, 49, 68,

or to use the number as an operand for one of the permanent
subroutines
14, 11-15, 20-29, 31-33, 41, 42,

will lead to a report stop (see Section 5.2); this ensures that a
number cannot be placed in the store, or made use of, if an unde-
tected overflow has occurred in its calculation. The report stop
occurs after the order initiating it has been executed, bul (in the
case of a 59 order) before the permanent subroutine has been
entered. If it is desired to place in the store a number in whose
calculation an overflow may have taken place the 109 order should
be used, unless it is required also to ensure that « = 0, in which
case the order 56 r 1 followed by a 19 order should be used.

32

1.8 Toe MoODIFIER REGISTERS

EDSAC 2 contains two modifier registers (or B registers). Each
modifier register has capacity for 11 binary digits and can hold
an integer in the range 0 to 2047. The registers and also the numbers
in them are denoted by s and ¢ Arithmetic operations in the
modifier registers take place modulo 2048 ; there is no indication of,
or restriction against, overflow. Similarly, when the content of a
modifier register is added to the address part of an order, the
addition takes place modulo 2048 and there is no carry into the
function part of the order.

Register r, which contains the address of the order currently
being executed, or about to be executed, is similar to a modifier
register, and it is possible to cause the address part of an order to
have » added to it before the order is executed. This facility was
provided primarily to enable general purpose library subroutines
to be stored on magnetic tape; it is recommended that the ordinary
programmer should use it only for local references. Note especially
that orders with functions 0-47 or 96-127 which are r-modified
must have addresses in the range —256 to +255.

33

CHAPTER 2

THE ORDER CODE

2.1 ForM OF ORDERS
In principle, the written form of an order is

(function number) (modifier letter) (address part);

the function number is an integer between 0 and 127, and the
address part an integer between O and 2047. It is necessary to
distinguish between a(r), the address part of the order in the store
(in the half-register whose address is r), and m, the address in the
order as actually obeyed. To obtain m we may have to add to a(r)
the content of a modifier register, and also a further contribution
if the previous order was a 2, 3, 4 or 5 order. For the moment we
neglect this last possibility.

Orders are of two kinds. Orders with function numbers between
64 and 95 refer in their definition to register s or ¢, and are called
modifier orders. In such orders it is necessary to specify which of
s and ¢ is referred to. The significance of the possible modifier letters
in a modifier order is as follows:

Modifier letters Refer to Obeyed address
5 s a(r)
¢ f a(r)

sr s a(r) - r

tr t a(ry — r.

The significance of the modifier letters in other orders is as follows:

Modifier letier Obeyed address
S alr)
r , a(r) + r
s a(r) + s
¢ a(ry + .

2.2 STRUCTURE OF THE ORDER CODE

The function numbers have, as far as possible, been arranged in
decades for easy memorizing, and functions with the same last digit
(in the scale of ten) tend to be similar. In particular:

functions with last digit O usually have a ‘set positively’ effect;
functions with last digit 1 usually have a ‘set negatively” effect;

34

functions with last digit 2 usually involve addition;

functions with last digit 3 usually involve subtraction;

functions which affect both arithmetic or modifier registers and
the store have last digit 8 (except 48);

functions which affect only the store have last digit 9.

The function numbers not discussed below will give rise to a report
stop (see Section 5.2). Functions 98 and 114 to 119 are used to
control the magnetic-tape equipment; the programmer does not
need detailed knowledge of their specification.

Unless otherwise stated, orders are obeyed in the sequence in
which they are stored; that is, the new value of » will be r + 1.
The effect of orders on the overflow flip-flop has already been stated
in Section 1.7. Register L is cleared by all floating-point orders
(except 19 and 24) and by all fixed-point orders which by their
nature clear the less significant half of A; that is, by orders

8, 10-18, 20-23, 25, 26, 30, 31, 35, 40, 41, 46, 51, 62, 68, 96, 100,
110, 120.

In the list of orders given below specifications are given opposite
the order numbers; on occasion some further comments are given
beneath.

2.3 DEeSCRIPTION OF ORDERS

2 Increase the obeyed address of the next order by .
3 Decrease the obeyed address of the next order by m.
4 Increase the obeyed address of the next order by a(m).
5 Decrease the obeyed address of the next order by a(m).

These four orders make it possible to use any half-register in the
store as a modifier register.

6 Multiply N(4) by 27 if m << 1024, or by 272048 if p > 1024,

7 Multiply N(4) by 2= if m < 1024, or by 22048-m if s > 1024,
Ifo <L m < 1024, the 6 order causes the content of the accumulator
to be shifted left m places, and the 7 order causes the content of the
accumulator to be shifted right m places. Such orders would be
punched as 6 fm and 7 fm. An order punched as 6 f —m will
cause a left shift of —m places, i.e. a right shift of m places; a negative
address similarly reverses the direction of the shift caused by a 7 order.

8 Exchange: set N(2) in 4 and N(A), in register m. Clear L.
The 8 order can be used for floating-point as well as for fixed-point
numbers, since if M contains a floating-point number, L will normally
be clear and the fixed-point rounding off will have no effect.

9 Store zero in register .

This order also works both in floating point and in fixed point, since
the zeros are the same in both cases.

35

10

11
12
13

15

16

17

18

19
20
21
22
23
24

25
26

29

36

Set F(rm) in M, without change of representation, and clear L.
This order is identical with the 30 order.

Set —F(rn) in M; clear L.
Add F(m) to F(M); clear L.
Subtract F(m) from F(M); clear L.
Multiply F(M) by F(m); clear L.
Divide F(M) by F(m); clear L.
This sets the overflow flip-flop if F(#) is not in standard form.

Add F(K).F(m) to F(M); put the old value of F(M) in K
and clear L.
Subtract F(K).F(m) from F(M); put the old value of F(M)
in X and clear L.
F(K) is initially set by a 24 order, but note that it is changed by a
16 or 17 order.)
Add F(m) to F(M), putting the result in register m as well as
in M clear L.
Store F(M) in register m, without change of representation.
Set | F(m)| in M; clear L.
Set —|F(m)| in M; clear L.
Add |F(m)| to F(M); clear L.
Subtract |F(m)| from F(M); clear L.
Set F(m) in K, without change of representation.
This order is identical with the 44 order.
Multiply F(M) by —F(m); clear L.
Set the integer m in M as a floating-point number, and clear
L (0 < m < 2047).

Store “or”: form in m the logical sum of the contents of M
and m; that is, set m; = 0 if both m; and M, were pre-
viously 0 and set »; = 1 otherwise.

Information can easily be packed by means of the 29 order. The
most convenient way to unpack it again is by means of the 62 order.

Set N(m) in A; clear L.
Set —N(m) in A; clear L.
Add N(m) to N(A).
Subtract N(m) from N(A).
Multiply: set N(A)g.N(m) in 4; clear L.
If N(A) > 1-274, N(mm) is placed in A4 and Ly is cleared.

Divide: set N(A){N(m), correctly rounded, in A ; clear L.
Dividing +a by —a produces the correct result but sets o = 1.
Add N(K).N(m) to N(4); put the old value of N(M) in K
and clear L,,.
36

il
X
d
!

AT T T e s

e

Ak

37

38
39

40
42
43

44
45

46

47
48

56

Subtract N(K).N(m) from N(4); put the old value of
N(M) in K and clear L,,.
N(X) is initially set by a 44 order, but note that it is changed by a
36 or 37 order. The 36 and 37 orders accumulate a true double-
length product, since the product N(m). N(K) is added to (or sub-
tracted from) N(M) 4 2739N(L), and Ly is set to zero in the result.‘

Set N(4) — N(m) in A and its rounded value in register m.
Store N(A4)g in register ».
Tt is possible to store N (M) in register s without rounding, irrespec-

tive of what may be in L, by a 19 order, since this copies the content
of M without change of representation.

Set |N(m)| in A; clear L,.
Set —|N(m)| in A; clear L,.
Add | N(m)| to N(A).
Subtract | N(m)| from N(A).
Set N(m) in K.
Exact division: this order is best described if the accumulator
is thought of as containing the integer 278N(4) and register
m as containing the integer 2% N(m). Order 45 divides the
integer in the accumulator by that in register m, placing
the:quotient, as an integer, in L, and the remainder, as an
integer, in M. The remainder has the same sign as N(m),
zero, however, being taken as having either sign.
Overflow (which will set « = 1) will normally cause the value of the
remainder to be wrong, as well as that of the quotient, except when

dividing +a by —a, when the correct result is obtained but with
overflow set.

Set the value of m in M as a fixed-point integer; clear L.
Here 0 << m < 2047, as with the 26 order.

Set N(rm) in L (or, what is the same thing, set F(m) in L).
Set N(L) in register m.
This will not cause a report stop even if « = 1.

Store N(M) in register s and N(L) in register m + 2.

Jump to m; that is, take m as the next value of 7.
Jump to m and clear M and L.

Jump to m if N(M) = 0; otherwise continue serially.
Jump to m if N(M) 5= 0; otherwise continue serially.
Jump to m if N(M) > 0; otherwise continue serially.
Jump to m if N(M) < 0;.otherwise continue serially.

Note that these last four orders refer to M, not to A4, and that they
work equally well for floating-point numbers.

Jump to m if & = 1; otherwise continue serially.
37

70 Set m in register s.
71 Set —m (i.e., 2048 —m) in register s.
72 Add m to s.
73 Subtract m from s.
74 Repeat, adding: increase s by 2; jump to m if the new value of
5 is not 0 or 1; otherwise continue serially.
75 Repeat, subtracting: decrease s by 2; jump to m if the new
value of 5 is not 0 or 2047; otherwise continue serially.
76 If s > m take r + 2 as the next value of r (i.e. skip one
location); otherwise proceed serially.
77 If s < m take r + 2 as the next value of 7; otherwise proceed
serially.
In the last two orders s is treated as a non-negative integer. The
order skipped is often a jump order, or a 2, 3, 4 or 5 order.

78 Add a(m) to s, putting the result in the address part of half-
register m as well as in 5.
79 Store s as the address part of half-register m.

57 Jump to m if « = 0; otherwise continue serially.
In both cases « is reset to 0.

58 Enter closed subroutine: jump to s, set the function parts of
the orders in half-registers O and 1 to zero, and their
address parts to s and r + 1 respectively.

This order is used to enter a closed subroutine; in effect it plants in 1
a link which is used by a 60 order. The value of s is preserved, and the
s register is therefore available for use within the subroutine. Note
that a similar precaution is nof taken with ¢, If it is desired to use one
closed subroutine within another, the contents of register 0 (i.e. of
half-registers 0 and 1) must be removed and stored in safety before
the inner subroutine is entered, and restored after it has been left;
otherwise the link from the outer subroutine to the master routine
will have been lost. Register 0 should not be used as working space
in a closed subroutine.

59 Enter permanent subroutine .
For details see Chapter 3.

60 Leave closed subroutine: set 2(0) in s and jump to a(l) 4 m.

This order provides the exit from a closed subroutine, and is comple-
mentary to the 58 order. It restores the value of s and returns
control to the master routine, skipping m half-registers. (Here m
will usually be 0, but it is sometimes convenient to use the 1 half-
registers immediately following the 58 order to contain subsidiary
data (program parameters) for the closed subroutine.)

62 Place in M the logical product of N(M) and N(m). That is,
replace M, by M,.m;, 0 < i< 39. Clear L.
This operation is also known as collate or logical “*and.”
In the following descriptions of orders 66-90 (modifier orders) it
is assumed that the order refers to the s register; there are similar
orders for the ¢ register. All calculations in the modifier registers,

or in the address parts of half-registers, are done modulo 2048; they
do not set the overflow flip-flop.

TSRy o AT S

80 Set a(m) in s.

81 Set —a(m), i.e., 2048 —a(m), in s.
82 Add a(m) to s.

Subtract a(#1) from s.

bbb Rand

foct
oo
(VY]

86 If s > a(m), skip the next order; otherwise proceed serially.
87 If s < a(m), skip the next order; otherwise proceed serially.
88 Exchange a(#1) and s. ‘

89 Store 5 (modulo 512) as the function part of half-register m.

90 Scale: if N(A) = 0, multiply N(4) by 27, where » is as large
as possible without overflow, and set s= —n If
N(4) = 0, jump to m and set s = — 129,

96 Cenvert to floating: if m < 1024, put 2"N(4) in M as a
floating-point number; if m > 1024, put 2"~ 208N(4) in M

" as a floating-point number. Clear L.

98 This order is used in magnetic-tape control routines.

99 Store MoM; ... Mg or My M, . . . My in half-register m,
according as m is even or odd. _

A 99 order stores the content of the corresponding half of register

M in half-register #. The 99 order will not cause a report stop if
o =1,

66 Clear L; then cyclicly shift the word in A4 m places left and
set the new value of 2 N(L) in s modulo 2048.

A 66 order leaves the overflow flip-flop unchanged.
68 Split: if F(M) = x.27, set p in s (modulo 2048), set x as a
fixed-point number in M and in register m, and clear L.

F(M) is not standardized before this order is obeyed. (Itis, ina
way, the complement of order 96, though the roles of m in the two
orders are quite different.)
69 Set s and a(m) = d, where dis the numerical equivalent of the
row of holes under the reading head of the selected tape
reader, and advance the tape one row.

The tape reader is previously selected by a 106 order. The table of
fumerical equivalents for 5-track tape is given in Appendix A.

38

T8

100 Set in the more significant half of M the order in half-
register s, and in the less significant half of M the order

in the less significant half of register m; clear L.
This enables one to use tables (e.g. for multiple switches) in which

each entry occupies a half-register (rather than a complete register)
without elaborate unpacking facilities. :

39

£
|
3
%
i
e
a
o
£
A
j&
3

i R

101 Stop the machine and light the stop light on the control
pancl. Display s on the neons on the control panel.

This order should be used at the end of a program.

102 Light the wair light on the control panel and wait until
the machine is manually restarted. Display m on the
neons on the control panel.

This allows a halt for tape-handling, etc.
105 Set b.7

106 If in the binary representation of s the “1°° digit is present,
connect tape reader 1 and disconnect tape reader 2; if
the “2” digit is present, connect tape reader 2 and dis-
connect tape reader 1; if the 4™ digit is present, connect
output channel 1; if the “8” digit is present, disconnect
output channel 1; if the *“16™ digit is present, connect
output channel 2; if the ‘32" digit is present, disconnect
output channel 2.

Both output channels can be connected at the same time. A value

of m which gives rise to contradictory instructions, such as 3 or 12,
will have a random effect; it will not, however, lead to a report stop.

107 Punch character corresponding to »2 on the output tape.
The teleprinter code for 5-track tape is given in Appendix A,

108 Store &.1

109 Store N(M) in register m, ignoring overflow flip-flop; i.e.
independently of «.

110 As order 100, except that m is to be taken as an address in
the reserved store.

This makes it possible to read the tables available in the reserved
store, and also the data relating to the program stored there. Some
of these are listed in Section 4.12, If the address # is even, the effect
of the 110 order is to read into M from the whole register m, thus
making it possible to read numbers, as well as orders, from the
reserved store,

112 Set or increment &.1

114-119 These orders are used in magnetic-tape control routines.
1201 If opTioNAL sTOP key 1 is depressed, light the OPTIONAL
sTOP light on the control panel and wait until the key is
raised or the RESET button pressed. Set M from the
manual register and clear L.
Note that the manual register is not read until the key is raised or
the RESET button pressed.

+ Full specifications of these orders will be found in the document, Pro-
gramming for EDSAC 2 with Main Store.

40

1202 | If opTioNAL stop key 2 or 4 is depressed, light the
120 £ 4 j OPTIONAL STOP light on the control panel and wait until
the key is raised or the RESET button pressed. Other-
wise proceed immediately to the next order. In either

case clear M and L, i.e. set N(4) = 0.
A 120 order with address between 1 and 7 will halt the machine if

the keys corresponding to the binary ones in the address are depressed,
and will read the manual register if the address is odd.

120 £16 Set digits in M to give information about peripheral
equipments as described below, and clear L.
(2) Line printer
M, =1 if buffer can accept characters.

() Output channels
M3 =1 if channel 1 selected
My =1 if channel 2 selected
Ms =1 if output is busy, i.e. if the output device on
cither channel, or the camera, is moving.

{¢) Input channels
M, =1 ifchannel I selected
= 0 if channel 2 selected.
(d) Output devices on channel 1

Punch 4 M,)

Punch 8 M; | =1 if selected
Punch C M, | =0 if unselected.
Line printer M J

(e} Output devices on channel 2

Punch 4 M,
Punch B M, =1 if selected
Punch C = M, =0 if unselected.

Line printer M,

The remaining digits of M are used to sense various flip-flops in the
machine and are of no interest to the ordinary programmer. They
are likely to take different values each time a program is run.

See Chapter 6 for further information on peripheral devices.

121 F1 Brighten the spot on the cathode-ray tube at a point with
x and y co-ordinates given by the digits M, — M,y
and M5, — Ms,, respectively, where M, and A, act
as sign digits.

41

12172 Advance the film in the camera of the cathode-ray tube
output device by one frame.

2.4 OPERATION TIMES

The following table gives the approximate timc?s taken by
operations other than those controlling peripheral equipment.

Type of order Time in |Lsec
Floating point + or — 100-170
Floating point x 210-340
Floating point - 480
Fixed-point + or — 30
Fixed point X 290-330
Fixed point +- 350
Shifts 25 L 5m

(n = no. of places shifted).
Others 17-42
Permanent subroutines Time in msec (approx.)
11 3-0
12 3-4+0-4p
(where p = log, F(M) if this is positive, and 0
otherwise).
13 3-8
14 4-0
15 4-0
31 30
32 3-4
33 3-8
34 4-0
35 4-0.

42

CHAPTER 3

THE PERMANENT SUBROUTINES

3.1 THE 59 ORDER

The actual effect of a 59 order is to bring about a jump into the
reserved store in order to perform one of the subroutines per-
manently stored there. The programmer may, however, regard a
59 order merely as an order whose effects are rather more compli-
cated than those of other orders.

It is convenient to divide the 59 orders into the following groups:

arithmetic operations (m = 11-15, 31-35),

input orders (sn = 8, 10, 30),

print orders (s = 20-29, 41, 42),

digit layout control (m = 1, 2),

page layout control (m = 3, 4, 5),

operations connected with differential equations (m = 7, 17, 37),
operations connected with magnetic tape (m = 18, 19, 38, 39),+
matrix division (m = 9),

planting of orders in the reserved store (s = 6).

A 59 order with any value of m not listed here will cause a report
stop (except 40, see Section 4.11).

The value of f may be altered by subroutines 10, 17, 30 and 37. The
content of the accumulator is altered by subroutines 3, 10-15, 17,
30-35, and 37. If there has been a recent undetected overflow (so
that « = 1) there will be a report stop on subroutines 1-4, 11-13,
20-29, 31-33, 37, 41, 42, that is, on all those subroutines except
34 and 35 which use the initial content of the accumulator.

3.2 ARITHMETIC OPERATIONS (SUBROUTINES 11-15, 31-35)

The following subroutines are used for calculating certain ele-
mentary functions. In the descriptions given, symbols carrying a
dash denote values on exit from the subroutine, those without a
dash denote values on entry. For floating-point subroutines
(11-15) relative errors are given, and for fixed-point subroutines
(31-35) absolute errors are given.

t These facilities are fully described in the document User’s Guide to the
EDSAC Magnetic-Tape System, by D. W, Barron. Copies of this document are
available from the Mathematical Laboratory.

43

n Description Max. error

11 F(M) = +/FM) 2-30

12 F(M) = exp F(M) 2-3%(p 4 1)*
13 F'(M) = log, F(M) 2-30

14 F(M) = sin F(M) 2-30

15 F(M) = cos F(M) 2-30

31 N'(4) = v/N(A) 2-38

32 N(M)=*1expNM) 2738
33 N'(M) = 1&gz log, N(4) 24
34 N'(M)=LsinaNM) 27 1
35 N'(M)=1icosaN(M) 2%
* Where p=IlogzF(M) if this is positive, and 0 otherwise.

All these, except 31, clear L; 13 and 33 disturb XK. 31 operates on
A but the result it produces has only single-length accuracy.
However, the relative error (errorf+/A) is always <2~ %.

A report stop will occur if the function called for is undefined;
this will be the case for subroutine 11 if F(M) < 0, for subroutine
13if M) < 0, for subroutine 31 if N(4) < 0, and for subroutine 33
if N(A)< 0. An overflow may occur during the operation of
subroutine 12 and this will either cause a report stop or set « = 1.

3.3 InpuT OPERATIONS (SUBROUTINES 8, 10, 30)

Subroutines 10 or 30 may be used to read a single number
from the input tape and to place it in the accumulator. Normally,
subroutine 10 is used to read a floating-point number and sub-
routine 30 to read a fixed-point number; however, if the number
on the tape has the prefix f or » (see Section 4.6) this will determine
whether it is to be treated as a floating- or fixed-point number,
overriding, if necessary, the choice of subroutine. Certain other
prefixes may be used in conjunction with subroutines 10 and 30,
and will have the same effect as they have when read by the assembly
routine. These prefixes are ¢, *, (, and), and their effects are listed
in Sectjon 4.6. In addition, { may be used as a prefix and will cause
a jump to the half-register whose address is '7; this makes it possible
for the machine to read a sequence of numbers of indeterminate
length and to pass on to some other action when the last number
has been read. If, when subroutine 10 or 30 is called in, the next
item (in the sense of Section 4.1) on the tape is not a number, or
one of the above prefixes, a report stop will usnally occur.

A number read in floating-point form is placed in M and ¢ is left
unaltered; thus F'(M) = x. If the number is read in fixed-point
form and if |x < 1, x is placed in A and ¢ is set equal to 0; on the
other hand, if |x| > I, then x.273 is placed in 4 and ¢ is set equal
to 39. An overflow will either cause a report stop or set « = 1.

T Note that ¢ is disturbed.

44

Order 59 f8 will read a S5-track tape punched in base-32 form,
and check the reading by carrying out a sum check. The tape must
be punched in a special form; this is best carried out by using
library routine P5* or P8*. Input of a base-32 tape may also be
initiated by pressing the SET BINARY key, in which case tape reader 1
is used and output chanmnel 1 is selected (see Section 6.3). When
the base-32 input routine is in use (whether entered by the key or
by order 59 /'8) and the sum check fails, the REPORT light and the
whole column of neons on the operator’s control desk will be lit,
but no output will take place.

3.4 OuTPUT OPERATIONS (SUBROUTINES 20-29, 41, 42)

All the subroutines in this category punch the number in M
on one of the output tapes.t Before control is returned to the free
store the contents of M and L are restored to their original value.
The digit layout of numbers punched by subroutines 21 and 22 can
be preset to the programmer’s requirements with the aid of sub-
routines 1 and 2 in the manner described in Section 3.5; the digit
layout of the numbers printed by the other subroutines is given
below, commas representing spaces. In all cases if the number is
negative a minus sign is punched; if the number is positive a space
is punched instead. Non-significant zeros are suppressed as far as
possible; a completely suppressed exponent represents 0, not 1.

m Stple Width Examples
20 MyM,... Mg as order 9 1272047,
>y OfO 233
23 Floating binary 21 —-123456, 123456,-127,

, -000345, 123456,7, ,,,
24 F(M) as integer (4 figs.) 7 R T
, 1234,
25 F(M) to 5 figures 12 —-1-2345,,-29,
,1:234540,,,,
26 F(M) as integer (6 figs.) 9 123456, ,
3533 0 LIS)
27 F(M) to 7 figures 14 —-1-234567,,-30,
s 0'00000010 1339
28 F(M) as integer (8 figs.) 12 -123, 45678 ,,

133335 -47 33
29 F(M) to 9 figures 18 , 1-23456, 789,,~-12,,

—1-98765,432105 5555
41 N(M) to 11 figures 16 —-12345, 123456, ,

, 00000, 000000, ,
42 23¥N(M) as integer 16 -123456, 123456, ,

!”!”,!’,9!!0”

+ Or, if the line printer has been selected, print the number in M directly,
within the limitations of the characters available on the printer (see Chapter 6).

45

e

Subroutine 23 is not really intended for use by programmers; it was
provided primarily for use in report stops. It prints N(M) to
12-figure accuracy, followed by the apparent exponent of F(M);
there is no standardization before printing. Subroutines 24, 26,
and 28 print the integer nearest to F(M); if this is outside their
range, the number is printed in the style of subroutine 25. Note that
for fixed-point printing styles it is N (M), not N{4)p that is printed.

3.5 Dicit LayouT CONTROL (SUBROUTINES 1, 2)

The digit layout of numbers to be punched by subroutine 21 can
be set by entering subroutine 1 with a digit layout parameter in M.
The digit layout parameter is a fixed-point fraction and is arrived
at in the manner described below. The digit layout for subroutine 22
can similarly be set by entering subroutine 2 with the appropriate
digit layout parameter in M. It is thus possible for the programmer
to preset two different digit layouts for use later in the program when
required.

As an alternative, the digit layouts for subroutines 21 and 22
may be set during the reading of the input tape by means of the
directives 1/x or 2/x respectively, where x is the digit layout para-
meter.

The digit layout constants for subroutines 21 and 22 are kept in
the reserved store in registers 118 and 120, respectively.

The method of determining the digit layout parameter will now
be described. It has already been explained that the parameter has
the form of a fixed-point fraction; this fraction must not have more
than 12 digits. If the digit layout parameter is negative, a number
punched on the output tape will contain a sign indication; that is,
a positive item will be preceded by an extra space and a negative
item by a minus sign punched immediately before the first unsup-
pressed digit. If the parameter is positive no sign indication will
be punched.

It is frequently required to suppress non-significant zeros in a
number, that is, zeros which have no non-zero digits to the left of
them. There are four ways in which non-significant zeros may be
treated:

A. Non-significant zeros printed.

B. Non-significant zeros replaced by spaces.

C. Non-significant zeros wholly omitted.

D. Non-significant zeros omitted, but count kept of them with a
view to inserting an extra space at the end of the number for
each zero omitted.

The digits of the digit layout parameter are interpreted in pairs

(except the third digit which is taken by itself). A pair of digits
may either set the print subroutine to one of the states A, B, C, or D,

46

-

or may leave its state unaltered. When any printing takes place,
treatment of non-significant zeros is determined by the state of the
print subroutine at the time. If a pair of digits alters the state of the
print subroutine, this alteration takes place before any printing
which may be called for by that pair of digits.

The digit layout parameter must not be such as to change the
style of zero suppression after any digits of the number have been
printed, since this may cause a suppression of significant zeros.

The first two digits of the parameter specify how the number is
to be expressed in preparation for printing. In the following list
of possibilities, & stands for an integer in the range 0 < d << 12.
It is understood that if 4 = 10, 11, or 12, there is a carry-over into
the first digit of the pair; for example, if 4 = 11, 24 will appear as 31.
The letters in the second column indicate the state to which the
print subroutine is set by the pair of digits concerned.

0d A F(M) converted to standard decimal form, with the
numerical part rounded off to 4 digits and having one
digit before the decimal point.

2d B F(M) rounded off to the nearest integer and expressed
as an integer having J digits, of which some may be
non-significant zeros. A report stop will occur unless
the integer is numerically less than both 10¢ and 23°,

44 A N(M) to be expressed as a fixed-point fraction rounded
off to d digits.

6d B 2¥N(M)to be expressed as an integer with 4 digits, some
of which may be non-significant zeros. A report stop
will occur unless 2 N(M) is numerically less than 104,

Although the number is expressed at this stage in a certain way,
it does not necessarily follow that it will, in fact, be so printed;
later digits in the parameter may specify that more or fewer digits
are to be printed, or that the decimal point is to be inserted in some
place other than that implied by the form in which the number is
originally expressed.

The digits of the number, beginning with the most significant,
are printed in groups. The composition of the first group is deter-
mined by the third digit of the digit layout parameter; that of
subsequent groups is determined by succeeding digits of the para-
meter, taken in pairs.

The third digit of the parameter, d, where 0 < d < 9, causes the
first d digits of the number to be printed, and 1eaves the state of the
print subroutine unchanged

Suceeeding pairs of digits of the digit layout parameter are inter-
preted according to the following table. In each case a further 4
digits of the number are printed, where 0 < d << 9. As before, the

47

letter in the second column gives the state to which the print sub-
routine is set by the pair of digits in question; if no letter appears,
the state is left unaltered.

0d A print a decimal point followed by 4 digits.

1d A print d digits.

2d print a space followed by d digits.

3d B print d digits.

4d C print 4 digits.

5d D print d digits.

64 D print subscript ;o followed by d digits of decimal exponent.

A pair of digits of the form éd4 will only be used when the first two
digits of the digit layout parameter are Od. The exponent of the
number is expressed as a three-decimal integer; the style in which it
is printed may be varied, within limits, by choice of the digit layout
parameter, but three digits should always be called for. For
example, the pair of digits 63 will cause nothing to be printed if the
exponent is zero, whereas the two pairs of digits 6211 will cause 0
to be printed.

The digit layout parameter must be terminated by the group of
three digits 945 where 0 < d < 9. This indicates that no further
digits of the number are to be printed, and causes & spaces (plus
those due to type D zero suppression) up to a maximum of 19 to
be printed; if one of the page layout subroutines is being used to
control page layout, and if it happens that the number is the last
in a line, the final spaces are omitted. If the digit layout parameter
contains any further digits these are ignored.

A common use of subroutine 21 or 22 is to enable a floating-
point number to be printed without an exponent. Suppose, for
example, we wish to print F(M), with five figures before and three
after the decimal point, suppressing non-significant zeros in the
first four digits. This may be done by multiplying F(Af) by 103
and printing it with the digit layout parameter set equal to
—-2841103925. It will be observed that the form in which the
number is expressed when the first two digits of the parameter are
interpreted (an 8-digit integer) is not that in which the number is
actually printed.

In addition to those given above there are a few other pairs of
digits which may be included in a digit layout parameter. These
are not likely to be required by the ordinary programmer, but are
given here for the sake of completeness. .

The following pair of digits may form the first two digits of the
parameter:

83 MM,... M, to be expressed as an order, with the function

digits expressed as a three-decimal integer and the address
as a four-decimal integer.

48

The following pairs of digits may be used in the latter part of a
parameter:
7d D print subscript , followed by 4 digits of the binary
exponent.
When this pair of digits is used the parameter will have begun with
44, and the binary exponent will be that explicit in the original
F(M). This exponent will, in effect, have been expressed for
printing as a three-decimal integer, and remarks similar to those
made in the case of the pair of digits 64 apply.
84 D print modifier letter of an order, followed by d digits of
the address.
This pair of digits will be used when the parameter began with 83;
they cause the address to be expressed as a four-decimal integer.
As in the case of exponents, there is some choice in the style in
which addresses are printed, but four digits must always be called for.

3.6 PaGge Lavour CoNTROL (SUBROUTINES 3, 4, 5)
These subroutines are designed to control the layout of numbers

- on the printed page, thus saving the programmer the trouble of

including orders for carriage returns and line feeds.

Subroutine 3 causes the items to be printed in blocks of &
items arranged in ¢ columns. & and ¢ are parameters whose
values may be set by the programmer by entering subroutine 3 with
N(M) = (b + 100c)2—3%. (This is most conveniently done by the
order 46/ #-+-100c). The conditions & < 100 and ¢ < 2048 must
be satisfied. When subroutine 3 has been set up in this way the
programmer need pay no further attention to layout; items printed
by any of the output subroutines (different items may be printed by
different subroutines) will be arranged in blocks as described. The
first item to be printed will be preceded by a carriage return and
two line feeds, so that it begins a mew block, and subsequently
there will be punched at the end of each line carriage return, line
feed, carriage return, or carriage return, line feed, line feed if the
line is the last in a block.

An alternative way of setting the layout for subroutine 3 is to
include on the input tape the directives 3/ and 4fc in that order.
In this case & < 2046 and ¢ << 2048. Both directives are needed.

Subroutine 4 provides a more complicated layout, in which a
block can be started in the middle. Let & — 1 be the number of
items to be printed in the first block, and ¢/ — 1 be the number of
items to be printed on the. first line, and let subsequent blocks be
of & items in ¢ columns. Then the layout is set up by entering
subroutine 4 with

N(M)=2"1%" 4 2-3
N(L)y=2"1¢ + 23,

49

The parameters &', b, ¢’, ¢ are represented by the digits of M
and L as follows:

b’zMg...Mlg C’ZLQ...ng
szzg.‘.M:;g C=L29...L39.

Note that these correspond to the address fields in two consecutive
registers. ’

Layout is suppressed when the store is cleared to ones, and can
be suppressed by punching the directives 3f — 1, 4/ — 1 on the
program tape. It can be suppressed during the operation of a
program by setting 5" = 2047, which is most conveniently done by
use of subroutine 5.

Subroutine 5 interchanges ¢ and #°, so that layout can be
suppressed by the orders:

70t —1
5915

Provided that ¢ is not disturbed in the interim, a subsequent 59 5
will restore &” and therefore resume the page layout previously being
used. This offers a convenient way of printing a single number on
one output channel without disturbing the page layout of the
numbers on the other output channel,

If more than one item is to be punched on the second channel,
it may be convenient to preserve the layout counts (which are held
in the reserved store) and set up a new layout for the second punch.
The counts may be preserved in the free store by the orders:

110 £ 122
19 fm

110 F 124
19fm+2

and reinstated, when the original output is to be resumed, by:
10 f'm

47 fm +2
5014

If it is desired to punch sequences of numbers on the output tape
in such a way that they may be read back into the machine by the
assembly routine, or by subroutines 10 or 30, care must be taken

that the numbers are terminated by a carriage return or two spaces. -

Some of the print routines will not do this: subroutines 20, 23, 25
and 27 may provide only a single space after an item, and sub-
routines 21 and 22 may not provide any spaces. These deficiencies
may easily be rectified by use of the 107 order.

50

3.7 DIFFERENTIAL EQUATIONS (SUBROUTINES 7, 17, 37)

Subroutine 17 (floating point) enables the integration of a set of
n first-order differential equations, dy/dx =fi(y(, y2,...¥,), to
be advanced one step, using the Runge-Kutta-Gill methodf. 3n
storage registers, beginning at address ¢, are required for use by the
subroutine.

The programmer must write an auxiliary (closed) subroutine for
evaluatingthe derivatives. Givens=candy,,y,,...inc, ¢+6,...,
the auxiliary places Af}, Af3, . . .ine -2, ¢+ 8, ..., where is
the interval in x, and sets f = 2» on exit. A 58 order calling in
the auxiliary must be punched before the order 59 17 and must
itself be preceded by 70 s¢. The registers ¢ + 4, ¢ + 10, ... must
be cleared before the first step of the integration.

Subroutine 37 resembles subroutine 17 but works with fixed-point
numbers. The auxiliary must form 274f,, where p is a suitably
chosen integer, and must set N(M) = 2= p and ¢ = 2» on exit.

If the auxiliary has some exit in addition to the normal exit by
a 60 order, a step of integration may be left incomplete. In these
circumstances, subroutines 17 and 37 may be reset to normal by
entering subroutine 7.

3.8 MATRIX DIVISION (SUBROUTINE 9)

Subroutine 9 forms 4B and A2 where A4 is an n by » matrix,
B is an n by p matrix, and A€ is a quasi-inverse of 4. The quotient
A~1B replaces B, and A2 replaces 4. It is possible to enter with
AC already in the place of 4 to form 4—18.

On entry:

s = (even) location of first element of A (or 49)
t = (even) location of first element of B
N(M) = 2n (set by a 46 order).

The order 59 /9 is followed immediately by a program parameter

fk a where

a=2p
k = fif A is given
or s if A2 is given
and f indicates the mode of storage of 4 and B according to the
following scheme:

I A stored by B stored by
0 TOws columns

1 Trows TOWS

4 columns columns
5 columns TOWS.

t For details of this method reference may be made to Technical Memorandum
No. 62/8: Integration of Ordinary Differential Equations on EDSAC 2, by D. W,
Barron. This document was issued on 12 April 1962, and copies may be obtained
from the Mathematical Laboratory.

51

If an overflow occurs, control is returned to the order next after
the program parameter, with the elements of 4 and B disturbed;
otherwise control is returned to the order mext but one after the
program parameter. The action of the subroutine changes M, L,
Kand ¢

The division is effecied by pivotal operations on rows, with inter-
change of rows to ensure use of the largest pivot. The time required
is 0-25n(n + 8)(n + 3p) msec, or 0-75ap(n + 8) msec if the quasi-
inverse is being used.

The determinant of matrix 4 may be found by calculating

n—1
T (max} Z je00)

Note that p may be zero, but » must be greater than zero, and
that the quasi-inverse should only be used with subroutine 9 or for
evaluating the determinant.

3.9 PLANTING OF ORDERS IN THE RESERVED STORE (SUBROUTINE 6)

Order 59 6 stores M. .. Mg or My. .. M3, in half-register 5 of
the reserved store, in the manner of a 99 order. A report occurs
if 5§ > 126. This facility is provided primarily for use in library
subroutines (e.g. Z8).

52

CHAPTER 4

THE PROGRAM ASSEMBLY ROUTINE

The facilities described here are those of the assembly routine
introduced in February 1962. They differ in some respects from
the facilities of the program input routine described in earlier
editions of this booklet. This chapter describes the facilities
available for free-store programs: the extensions for main-store
programs are given in the document Programming for EDSAC 2
with Main Store.

4.1 INTRODUCTION

The normal method of reading orders and numbers into the store
is by means of the assembly routine, which is brought from magnetic
tape by the directive 25/s2, which must be punched at the head of
the program tape. Subroutines 10 and 30 use the same conventions,
and may therefore be considered with the assembly routine in the
following description. _

The way in which a program must be punched on an input tape
has been designed so that it can be printed out in readable form on
a teleprinter; certain layout symbols must therefore be included on
the input tape. All symbols used in punching a program are
available on figure shift; the letter shift symbol should only be used
within a title (see Section 4.6).

Apart from the layout symbols, a program tape consists of four
components: orders, numbers, directives, and prefixes. The first
three, each of which contains several rows of tape, will be referred
to as ifems; a prefix obeys rather different rules. Orders and
numbers are intended to be read into the store; directives and
prefixes control the way in which orders and numbers are so read.
Except as controlled by directives, orders and numbers will be
stored in a consecutive list in the sequence in which they are read;
this may cause a half-register with an odd address to be left
unaffected, since a number can only be read into a complete register.

4.2 PARAMETERS

A parametric address facility is available, with 125 parameters
numbered from 3 to 127 (inclusive). An address as written and
punched consists of a numerical part with any number of parameters
added to it or subtracted from it. The numerical part of the address

53

l
l

must be written first and may be preceded by a minus sign; each
parameter must be written as the letter p or » (according as it is
to be added or subtracted) followed by the number of the parameter;
if the numerical part is zero it may be omitted, provided that at
least one parameter is present. Examples of addresses containing
parameters are:

—5p12517 23p3n6 5Tnlndp96.

The address will always be calculated modulo 2048, overflow being
ignored.

The parameters pl and p2 serve a special purpose. pl, which is
automatically varied during input, defines the address in the store
into which the order or number currently being read (or about to
be read) is to be put. The use of p2, which is analogous to pl, will
be explained in Section 4.4. Initiallv, pl is set equal to 2 and
P2 to 2000 by operation of the directive 25/52.

The remaining parameters are freely available for use by the
programmer. They may be set in two ways, either explicitly or
implicitly. A parameter is set explicitly by a directive (see Section
4.5). It can be set implicitly by attaching a labe! to an order or
number; when this is read by the assembly routine, the address
of the half-register or register into which it is put will be set as the
value of the relevant parameter. A label consists of an opening
bracket, followed by the number of the parameter; it must precede
the carriage return or two spaces which terminate the item.

The value of a parameter may be set explicitly whether or not it
previously had a value; it can be set implicitly only if it previously
did not have a value. The value of a parameter can be cancelled,
without another value being set immediately, by a suitable directive.
A parameter whose value, at the current stage of reading in the
program, has been set and not subsequently cancelled is called sez;
a parameter whose value has not yet been set, or has not yet been
set for a second time after being cancelled, is called unser. Initially
all parameters except p1 and p2 are unset; this occurs automatically.
Parameters may be unset at a later stage of reading a program by a
directive (see Section 4.5). -

An unset parameter can be set either explicitly or implicitly. It
can also be used as a forward reference (that is, it can be used in an
order which occurs on the input tape before the value of that
parameter has been set).

Set parameters can be used in directives as well as in orders.

4.3 REPRESENTATION OF NUMBERS

A number consists of a string of not more than 12 digits, possibly
preceded by a sign and possibly containing a decimal point. It may
be multiplied by a power of 10 andfor of 2; there must not be more

54

than one of each, with the power of 10 first if both are present.
A power is specified by the symbol |, or , followed by an exponent.
This is an integer with no decimal point, preceded by a minus sign
if negative. An exponent of 10 may not exceed two digits; an
exponent of 2 may not exceed three digits.

Examples of numbers are

1234 +-1234,0—8 —1+4,6,—20

Regardless of how a number is written, or punched on the tape,
it may be stored in the machine in either floating- or fixed-point
form. This will be determined by the prefix £, #, or nn if present (see
Section 4.6); otherwise the representation will be the same as that
of the last number read in, whether by the assembly routine or by
subroutines 10 or 30.7 Initially, the machine is set to read numbers
in floating-point form (by operation of the directive 25/s2).

If a number is read in fixed-point form, it will be converted to
binary form as it stands if it is less than 1 in absolute value; other-
wise it will be multiplied by 2-3° during conversion. Note that
— 1 must therefore be punched as —1,39.

A number is normally placed in the next available register,
leaving a half-register unused if necessary. A fixed-point integer
preceded by p+ or p— is placed in the next available half-register,
being negated in the case of p—. It is necessary for such an integer
to be less than 2'° — 1 in modulus.

4.4 REPRESENTATION OF QRDERS

An order is punched in the same way as it is written. It starts
with the function number, which is a decimal integer in the range
0 to 127, with no sign; the function number must not be omitted,
even if it is zero. It is followed by the modifier letter or letters
(f, r, 5, 1, 57, tr), and then the address, written according to the
conventions of Section 4.2. If the address contains no numerical
part but at least one parameter, and the modifier letter is £, this
letter may be omitted.

If an order refers to a number whose value is known, there is
another form in which it can be written. Instead of giving the
address of the number in the usual way, it is possible to write the
number itself instead of the address; the assembly routine will
then put the number in a list in another part of the store, and put
the correct address into the order. For this purpose the order must
be punched as function number, followed by an asterisk, followed
by the number punched according to the usual rules (and preceded

t The prefix s is only meaningful when read by the assembly routine, not by
subroutines 10 and 30. .

55

by f, nor nn if necessary). p2 is used to specify the register into which-
the next constant is to be put, and is automatically stepped on by 2
every time this facility is used.

4.5 DIRECTIVES
The directives available are as follows:

pm = a Set parameter m to the value @, where ¢ is an address,
written according to the rules of Section 4.2 but with
no forward reference allowed.

In particular, the directive pl = ... determines where the orders
or numbers next read are to be put in the store, and the directive
p2 = ... determines where the constants written in place of
addresses in orders (see Section 4.4) are to be put.

=m Unset the parameters from m to 127 inclusive, to enable
them to be used for forward references or to be set
implicitly. m is an integer from 3 to 127.

=mfn Unset the parameters from 1 to » inclusive.

In general the higher-numbered parameters should be used for cross-
reference within subroutines (and re-used when necessary) while
the lower-numbered ones should be used for references from one
part of the program to another (and so kept fixed).

sm Start program at location m, having first checked that all
parameters used have had their values set. Here m is an
address containing no forward reference.
sr m Start program at m without making the above check. This
directive is useful for interludes. (See Section 4.11)

Ifx to 4fx Set digit or page layout parameters. For details,
see Sections 3.5 and 3.6. :

The digit or page layout constant is treated as a fixed-point
number whatever the type of number conversion currently selected.

4.6 PREFIXES

A prefix has an effect similar to that of a directive. It may be
punched on its own or before an item, but not within an item or
between an item and its terminating symbols. The possible prefixes
are as follows:

* Wait until the machine is manually restarted.
This is useful to give time for tape-handling, etc.
56

f Read numbers in floating-point form.

n Read numbers in fixed-point form.

nn Read numbers in fixed-point form, scaled by 220,
This is useful for setting main-store addresses.

(Change to tape reader 1.
)} Change to tape reader 2.

r If pl is odd, place the dummy order 2 0 in the next half-
register.
This enables one to be sure of reading the next order into an even
half-register. The dummy order will have no effect unless the last
order was a 76, 77, 86 or 87 order.

¢ Punch all succeeding symbols, up to and including the next
line feed, on to the output tape, keeping no record of them
inside the machine.
This facility is used to put tifles on the output tape; if a title of
several lines is wanted, each line must have its own prefix. If the
title is in letter shift, care must be taken to include a figure shift
at the end, before the line feed.

pt Begin optional section.
pn End optional section.

It key 0 on the control panel is up, everything between pt and pn
is ignored. If key O is down, characters following pt up to and
including the first line feed are copied to the output tape, then the
program following is read in the normal way. The pn must follow
immediately after the last carriage return, line feed of the optional
section. A pt not paired with a pn, or vice versa, causes a report
(see Section 5.3).

pp See Section 4.9.

These prefixes may all be used with the assembly routine. All
except r, pf, pr and pp may be used with subroutines 10 and 30.
A prefix which may be used with subroutines 10 and 30 but not
with the assembly routine is:

{ Cease reading numbers and jump to the free-store register

whose address was in 7 when the 59 £ 10 or 59 /30 order
was obeyed. (See Section 3.3)

4.7 GENERAL PUNCHING RULES

Within titles, any symbol may be punched and will be copied
on to the output tape. OQutside a title a figure shift (erase symbol)

57

will always be ignored, and a letter shift symbol must never be
punched.

Each item must be terminated by two spaces or a carriage return;
these are to be regarded as part of the item. Single spaces in an
item will be ignored; all other symbols will lead to an input report
(see Section 5.3). Outside an item, line feeds, carriage returns,
spaces and blank tape will all be ignored.

Prefixes must always be outside an item.

It will be seen that an erase can be punched over any symbol,
and that an asterisk or bracket can be punched over a line feed;
this simplifies the use of correction tapes.

4.8 TRANSFER OF SUBROUTINES FROM MAGNETIC TAPE

The directive gf causes library subroutine number g to be trans-
ferred from magnetic tape to the free store, starting at the address
given by the current value of p1. This must be even: if there is any
doubt the directive rg/ should be used; this will ensure that pl is
even before the transfer starts. pl is automatically incremented
when the transfer is successfully completed. A list of library
subroutines stored on magnetic tape, together with their code
numbers, is given in the document Users’ Guide to the EDSAC
Magnetic Tape System.

4.9 Masgs AND TABLES
It is sometimes required to read in an item of the form

al2* b2y L 274 ...

for example when setting up masks or logic tables. This is facili-
tated by the prefix pp. The effect of this is to add the number
following the pp to the previous item. The addition is done in
fixed point, ignoring overflow; a report occurs if pl is odd, or if
the pp is followed by an order. Thus to set the quantity

15,20 128,11 - 7,5 + 1
in register 100 we would write

pl = 100
15,20 ppl128,11 pr1,5 ppl

The number following pp is restricted to be an integer, possibly
with a binary exponent, and is normally terminated by a double
space (though carriage return, line feed is allowed). Fixed-point
conversion must be selected by an n elsewhere on the tape. Note
that the item preceding the first pp must be correctly terminated by
a double space.

58

4.10 Use oF STORE BY THE ASSEMBLY ROUTINE

The assembly routine uses registers 0, 1, 2 and 15,104 to 16,383
in the main store. It disturbs the contents of registers 0 to 38 and
2046 in the free store whenever it is called from magnetic tape.
Q*ew information can be placed in these registers, but any informa-
tion previously there is destroyed.) Information cannot be placed
in registers 0 or 2046 in the free store.

If the directive 25/s2 is read by use of the SET START AND CLEAR
key, the free store, and registers 3 to 15,103 of the main store, are
cleared to ones, and page layout is unset.

Parameter m, if set, is stored as a fixed-point integer in register
16,128 4+ m of the main store.

V 4.11 INTERLUDES

An interlude is a small section of program which is obeyed during
the input of the main program. The interlude should be started
by the directive 57 m (see Section 4.5), and at the end of the interlude
control should be returned to the assembly routine by the orders:

7052

59118
1725

5072

These orders may be anywhere in the free store from location 40
upwards. They cause the assembly routine to be re-entered without
clearing the store, with parameters 1 and 2 set to the values they
had when the interlude was started. Registers 0 to 38 and 2046 of
the free store are disturbed. The interlude must not disturb
registers 16,128 to 16,383 of the main store. (The above séquence
of orders takes the place of 59 f40, which was used to terminate
interludes in the program input routine described in earlier editions
of this booklet.)

4,12 CONSTANTS IN THE RESERVED STORE

The following constants are available in the reserved store and
can be read by a 110 order.
N(1000) to N(1022):
N(1000 + 2t) = 101+ 2-4¢ =10, 1,..11
N(1422) 26.27%: approximately 1{10
N(1424) 1000/1024
N(1426) 10/16
N(1428) 2719 —2-% e 0£0, 127t 2047
N(1430) —1
N(1432) 100.2-%
59

N(1434)
N(1436)
N(1438)
F(1440)
N(1442)
F(1488)
F(1490)
N(1496)
N(1498)
N(1532)
F(1534)

if2
1/4/2
124/2
—3
1/10
116
142
112
14
log, 2
af2.

CHAPTER 5§

DETECTION OF ERRORS IN PROGRAMS

5.1 INTRODUCTION

EDSAC 2 provides two built-in facilities specially for the detection
of errors in programs. These are the report stop and the frace. In
addition, the assembly routine incorporates extensive checking, and
there are available a number of service routines designed to facilitate
the detection of program errors.

5.2 THE REePORT STOP

Whenever an attempt is made to place in the store a number in
whose calculation an undetected overflow has occurred, or to obey
an order whose function number has no meaning, or to use a non-
standard negative number as the operand in a floating-point order,
or to read by subroutines 10 or 30 an improperly punched tape, a
report stop will occur. The effect of this is to punch five or six
items on an output tape, after which the machine stops on a 101
order in the reserved store.

The items printed are as follows:

(1) The content of M, in the style of subroutine 23; that is,
N(M) as a fraction to 12 digits, followed by the binary
exponent of F(M). If the report stop has been caused by
overflow, the content of M is that after the order which
caused the report stop has been obeyed, and is usually
meaningless. .

(2) An asterisk if « = 1 at the order which caused the report stop.

(3) The order which caused the report stop.

(4) The address of this order in the store; that is, the current
value of r.

(5) The current value of s.

(6) The current value of ¢.

If the order printed is a 59 order, it indicates that the conditions
for use of the subroutine have not been satisfied; the value of s
printed will be the value it had when the subroutine was entered
(but the value of ¢ is meaningless).

A report stop caused by an improperly punched input tape will
give little useful information. Ttem (3) in the above list will be
59 110 or 59 /30, and the cause of the report stop will usually be

61

obvious on looking at the last few rows of the tape that have been
read into the machine.

A report can also occur during reading of numbers by subroutines
10 or 30 if the number exceeds capacity.

5.3 ProGrRAM INPUT REPORTS

When the assembly routine encounters anything inadmissible on
4 program tape, the machine prints if/, where 7 is a number which
identifies the fault and / is the current value of pl, and then halts
with the OPTIONAL sTOP lamp on. If the RESET button is pressed the
remainder of the offending item is ignored, and the reading of the
program is resumed until the start directive is reached, when the
machine stops with the REPORT lamp lit. If the fault is that of
unsetting a parameter which has been used as a forward reference
but not set, the machine prints Pcfifj where ¢ is the parameter
number and i, j have the same meaning as before. If a report
occurs in a start directive, a list of any parameters used but not set
is printed when the RESET button is pressed; the machine then stops
with the REPORT lamp on.

Since a report causes the remainder of the item to be ignored, an
error may cause bogus input reports elsewhere. For example, an
error in a parameter-setting directive will mean that the parameter
is subsequently regarded as unset.

A list of possible errors, together with the corresponding identi-
fying numbers, is given as an Appendix to the document, Pro-
gramming for EDSAC 2 with Main Store.

5.4 TRACE

During any period of time in which the TRACE key is held down,
a list is kept of jump orders obeyed during the running of the
program. This list is kept in the reserved store. A single repeated
cycle occupies one entry in the list, and a double repeated cycle
occupies two entries; at any time the list contains the 41 most
recent entries. This list can be analysed, and printed as a record
of jumps and cycles by service routine PM 25*%; alternatively, PM 24*%
can be used to print details of the last two jump orders obeyed.
The trace facility reduces the speed of the machine by a factor of
about 2. If the TRACE key is down, the SET START AND CLEAR and
SET START keys are inoperative.

5.5 SERVICE ROUTINES

Details of the service routines which are available to assist in the
detection of errors in programs are given in a document called
EDSAC 2 Service Routines, which is available from the Mathe-
matical Laboratory.

62

5.6 CoMPARISON PosT MORTEM

The original program input routine included a comparison post
mortem facility, the purpose of which was to compare the program
actually in the machine with the program originally read in, and to
print out any discrepancies. A full description of this facility was
given in previous editions of this booklet. It should be noted that
the assembly routine now in general use does NOT include any
comparison post mortem.

63

CHAPTER 6

PERIPHERAL EQUIPMENT

6.1 EQUIPMENT AVAILABLE

Communication between the computer and the external world
is via its input and output channels, to which may be connected
various electro-mechanical and electronic devices collectively known
as peripheral equipment.

This equipment comprises:

2 input channels, to each of which is connected one paper-tape
reader capable of reading tape at speeds of up to 1000
characters (i.e. rows of holes) per second.

2 output channels, to which any of the following equipment
may be switched:

Punch 4—slow (30 chfsec) paper-tape punch (5-track).

Punch B—fast (300 chfsec) paper-tape punch (5-, 7- or 8-track).

Punch C—fast (300 chfsec) paper-tape punch (5-track).

Line printer (75 lines per minute).

1 special output channel to which is permanently connected a
cathode-ray tube output device, with camera.

In addition to the above input-output devices the term ‘peripheral
equipment’ is also taken to include the magnetic-tape auxiliary store.
This consists of 4 magnetic-tape units designated 4, B, C and D.
These communicate with the computer via 4 magnetic-tape channels
known as 1, 2, 3 and 4. Any tape unit can be connected to any
channel.

No further details of the magnetic-tape equipment will be given
in this booklet since a full description is available in Users’ Guide
to the EDSAC Magnetic Tape System, by D. W. Barron. Copies
of this document are available from the Mathematical Laboratory.

6.2 InPUT

Input of programs and of most data is from 5-track paper tape.
The EDSAC teleprinter code for this is given in Appendix A. The
assembly routine and permanent subroutines 10 and 30 (see p. 44)
are designed to read information punched in this code. Sub-
routine 8 will read information punched in base-32 (see p. 45).

64

Special subroutines have to be provided to read information punched
in any other 3-track form.

_Some of the available tape readers (notably the green-coloured
ones, made by Elliott Brothers) may be used to read 5-, 7-, or
8-track tape merely by pulling out the loading bar on the front of
the reader to the appropriate position. There is no standard
EDSAC 7-track code; one Flexowriter is available in the Mathe-
matical Laboratory for preparing 7-track tape, but its use is normally
restricted to special projects which cannot conveniently be handled
on 5-track tape.

6.3 Output EQUIPMENT SELECTOR

A set of four, 3-position keys is fitted to the top right-hand side
of the control panel. These keys control the selection of slow
punch A4, high-speed punches B and C, and the line printer. If any
key is in its centre position, its associated output device will not be
connected to either of the output channels. If a key is placed in
the L.H. position, its associated device will be connected to output
channel 1 (as specified by a 106 order); if it is in the R.H. position,
the device will be connected to output channel 2. Note that any
number of the available output devices can be connected, if
necessary, to the same channel.

A neon is mounted to the right of each key, and, when lit, indicates
that the associated device is busy. When the oUuTPUT BUSY light
comes on, reference to these neons will enable the output device
causing the stoppage to be identified. In particular, if an attempt
is made to select an output device that is unplugged from the
machine, the appropriate neon and the oUuTPUT BUSY light will both
come on, and the machine will be held in the “output busy” condition
until the key is returned to its centre position.

Note that the machine will continue to operate even if one (or
both) of its output channels is unconnected to a punch or printer;
information put out on such a “dead” channel is, of course,
lost.

6.4 LINE PRINTER

The line printer is a modified Hollerith tabulator printer, capable
of printing 80 characters on one line. The characters that can be
printed are restricted to the decimal digits 0-9, decimal point, and
minus sign; these are treated exactly the same in figure shift and in
letter shift. All other characters normally printed by a teleprinter
will appear as spaces, except asterisk, which is printed as a decimal
point; the symbols for figure shift, letter shift and blank tape are
ignored. A number such as 1-23456,,-7 is printed as 1-23456 -7.

65

The output of suffix |, can be avoided by the use of library sub-
routine P4. It should be noted that, owing to the method of
construction of the printer, artificial spaces always appear after the
20th and after the 40th columns (counting from the left).

The printer has associated with it a buffer store which can hold
up to 80 characters. This buffer can be filled very rapidly by the
machine by means of normal output orders (standard reserved-store
print routines can be used for this purpose). When the buffer
contains all the characters it is intended to print on one line, printing
can be initiated by the output of a carriage return symbol: as with a
teleprinter, all line feeds must be separately programmed. If the
buffer is empty, the carriage return symbol is ignored, and nothing
is printed. If an attempt is made to load 81 characters into the
buffer without a carriage return, the printer will automatically
carry out a line feed and then immediately print the 80 characters
in the buffer, leaving the 81st character in the buffer for subsequent
printing.

The print cycle takes approximately half a second, but the buffer
becomes free, and may be reloaded, after about two-thirds of this
period. Programs with a large amount of output can be arranged
to overlap calculation and printing: this is most conveniently done
by library subroutine P6, which uses the interrupt facility (see
Section 6.5), or use can be made of order 120 f 16 (see page 41).

During the print cycle, before the buffer has become free for
reloading, the printer can accept any of the following groups of
characters without taking any further time:

{a) two line feeds,
(&) a single character to be printed,
(c) aline feed followed by a single character to be printed.

Any of these groups wiil cause the printer to become busy; this
means that an attempt to send further characters to the printer, or
to use any other output device (including the cathode-ray tube) will
hold up the machine until the print cycle is finished. Note, however,
that the machine can go on computing whilst the line printer is busy.
The printer may also go busy due to certain fault conditions;
these will usually cause the red NOT READY light on the printer to
be lit.

There is a push button labelled PRINT on the front of the printer.
When pressed this causes a line feed and then the printing of the
contents of the buffer (if any). This button must not be pressed
while any of the magnetic tapes are in use, since if it is pressed there
is a danger that information on magnetic tape may be destroyed.
The key labelled PAPER FEED on the machine control panel, when
depressed, causes the paper in the printer to be advanced.

66

6.5 INTERRUPT FACILITY

This facility provides a means of breaking into a program to
take special action when a button on the control panel is pressed,
or when the line printer becomes free to accept more characters.

The programming involved in utilising this facility is elaborate,
and the interrupt will generally be used in conjunction with special
library subroutines (for example P6, Z10). However, the facility
is described here for those users who wish to make direct use of it.

The source of an interrupt is selected by a 4-position switch on
the control panel: the positions of this switch are OFF, MANUAL,
PRINTER, PUNCH. A manual interrupt is signalled by pressing the
button next to the interrupt switch. The neon above the button
comes on, and will stay on until the RUN key is lifted. Whilst the
neon is on the INTERRUPT switch should not be moved: the button,
however, is inoperative. The printer interrupt is signalled whenever
the buffer store becomes free to accept characters; if the switch is
moved to PRINTER when the printer is not in use, there will be an
immediate interrupt. The switch position labelled PUNCH is
intended for use in conjunction with an automatic error check on
high-speed punch B, which is in course of being provided.

The actual interruption takes place after the first jump order in
the free store following the signalling of an interrupt condition;
thus interrupt is ineffective in the reserved store. The effect is to
transfer control to location 2041 in the free store, recording a link
in the reserved store (a(0) = s, a(l) = r), and setting the most
significant two digits of s to be:

01 if the interrupt was manual,
10 if the interrupt was from the printer,
11 if the interrupt was from the punch.

(The remaining digits of s are not all zeros, and may not be the same
on different occasions that the program is run.) ‘

Care must be taken to avoid the situation in which the program
which deals with an interrupt is itself interrupted. If there is a
possibility of this occurring, the first action of the interrupt program
should be to preserve the link. Similarly, if the interrupt program
uses a 59 order the link must first be preserved. The trace facility
(see Section 5.4) is incompatible with the interrupt facility: if an
interrupt occurs when the TRACE key is down the machine will enter
a closed loop in the reserved store.

6.6 CATHODE-RaY TuBe OUTPUT

This device has two cathode-ray tubes mounted side-by-side.
The left-hand tube has a camera associated with it, while the right-
hand tube, which has a long-persistence screen (about 3 seconds),
is more useful for visual observation.

67

The display on both tubes is controlled by the order 121 £1 (see
p. 41) which causes a spot on each tube to be brightened for
approximately 30 usec. The matrix of possible spot centres is

1024 by 1024, but each spot spreads over an area of about 4 by 4

matrix points, so that the line resolution is only about 1 in 256.

The camera on the left-hand tube works in association with order

121 £2, which advances the film by one frame. To use the camera
the onfoff button on the top of the camera must be pressed down
and turned clockwise to lock it in the “on” position. The L.H.
neon above the camera tube will then light to indicate that the
camera is on. Note that this button opens the camera shutter. It
is preferable, therefore, only to turn the camera on at the beginning
of a run in which it is to be used, and to turn it off again at the end
of the run.

The approximate number of frames of film unused is indicated by
an engraved disc on the camera. When the film is exhausted, the
R.H. neon of the camera tube lights, as does the oUTPUT BUSY lamp
on the control panel. To remove the “output busy” condition, and
to allow the machine to be used whilst the camera is being unloaded,
the camera must be switched off.

If an attempt is made to advance the film by means of order
121 £2 and an “output busy” indication is given, the most likely
cause is either that the camera is not switched on or that the film
is exhausted.

Note that if the camera is switched on when the film is exhausted
an immediate “output busy” indication will be given, even if an
order 121 f'2 has not been used.

The order 121 f2 takes about 30 psec, but it inhibits any further
output order, or positioning of magnetic tape, for about 1 sec.

For normal operation it is recommended that the film should be
advanced by 121 £2 before displaying data by means of 121 /1,
and also advanced one frame at the end of a run.

EDSAC 2 TELEPRINTER CODE

APPENDIX A

N ‘ wnerica Numerical
Code g;ﬁf:ﬂ% F. igurcehamfﬁ);er Figure gquivar'enf Letter Equivalent
00-000 0 No effect 0 3 A 11
00-001 | ra F 1 24 B 23—
.00-010 2 Carriage return 2 6 C 22
00-011 3 0 0O 3 18 D 15
00-100 4 ¥ R 4 17 E 14
00-101 5 7 K 75 10 F 1
00-110 6 2 U 6 20 G 17
00-111 7 5 S 7 5 H 10
01-000 8 Line feed 8 9 I 24
01-001 9 8 L 9 12 ’ J 2(2
01-010 10 5 H -+ 29 K 5
01-011 11 [A L — 23 L 9
01-100 12 9 M 28 M 12
01-101 13 (Z 10 15 N 22
01-110 14 = E 2 19 O 2
01-111 15 10 D I 1 P 1
10-000 16 P P n 22 Q 29
10-001 17 - 4 G P 16 R 4
10-010 18 3 Y F 4 S 2'17
10-011 19 2 W s 7 T .
10-100 20 6 J t 21 I{ ,
10-101 21 t T = 14 v 28
10:110 22 n N * 25 W }}9
10-111 23 - B (13 X 26
11:000 24 1 I) 26 Y 18
11-001 25 C / 11 V4 13
<010 26 X Action . Numeral Equivalent
{ : -gl 1 27 L)etter shift Figure sh_lft 31
11-100 28 . v Letter shift 27
11-101 29 + Q Space 30
11-110 30 Space Carriage return 2
11-111 31 Figure shift Line feed 8

;
¢
3
bv’

R,

INDEX

Accumulator 6, 31

Address 5, 29

Address part 7, 10, 14, 31, 34

Arithmetic unit 5, 6, 31

Auxiliary storage—see Magnetic
tape

Auxiliary subroutine 51

B register—see Modifier register

Cathode-ray tube 41, 42, 67-68
Comparison post-mortem 63
Constants in reserved store 59-60
Constants, listing of 23, 55-56
Counting 12-14

Cycle 10-14

Differential equations 51
Digit layout parameter 46-49
Directive 20-21, 53, 56

Error diagnosis routines 61

Flexowriter 65

Forward reference 25, 54, 56, 62
Free store 5, 29

Function number 7, 34
Function part 31

Half-register 5, 29, 39, 53, 57

Input 5, 6, 64-65
Input channel 64
Instruction—see Order
Interlude 36, 59
Interrupt 67

Item 53

& Jump orders 9, 37-38

Keyboard perforator 6, 18

Label 10, 22, 54

Library subroutine 27, 58
Line printer 64, 65-66
Link 27, 38, 67
Loop—see Cycle

Magnetic tape 39, 40, 43, 58, 64
Main store 30

Masks 58

Master routine 26

Modification of orders 14-17
Modifier letters 31, 34, 55
Modifier orders 16, 34, 38-39
Modifier register 13, 33

Number, fixed-point 30
Number, floating-point 30
standard form of 30
Number, punching of 21-22,
54-55
Numbers, range of 6
internal representation of 30
representation of 54-55

Operation times 42
Optional program sections 57
OPTIONAL STOP keys 40-41
OPTIONAL STOP lamp 40-41, 62
Order 5, 53
punched form of 18-19, 55-56
written form of 7, 31, 34
Order code 6
description of 34-42
structure of 34-35
Output 5, 6, 22, 65
OUTPUT BUSY LAMP 65
Output channel 64
Output equipment selector 65
Overflow 16, 32, 61
i Overflow flip-flop (o) 32

71

Page layout 23, 49-50

Parameter 10, 22, 25, 26, 53-54
set 54
unset 56
Peripheral equipment 64-68
Permanent subroutines 17, 29, 38,
bt 43-52

for arithmetic operations 4344
for digit layout control 46-49
for input 44
for integration of = differential
equations 51
for magnetic-tape control 43
for matrix division 51-52
for planting orders in reserved
store 52
for output 45-46
for page layout control 49-50
summary of 43
Prefix 53, 55, 56-57
Program 5
Program assembly routine 53-60,
62
Program input reports 62
Program input routine 53, 63
Program parameter 38
Punching, general rules for 57-58

Register 5, 29
Register A 31
K 3

L 31

M 31

r 33

72

Register s 13, 33
r 13,33
b 40
REPORT lamp 45, 62
Report stop 61-62
Reserved store 29, 43, 61, 62, 67
RESET button 40, 41, 62
RUN key 19

Service routines 62
SET BINARY key 45
SET START key 62
SET START AND CLEAR TO ONES key
59, 62
Special orders—see Permanent sub-

routines
Stop order 18, 40
Storage location—see Half-register
Store 5
free 5,29
main 30

reserved 29, 43, 62, 67
Subroutine 26-28
Subroutine, closed 27, 38

Tape punch 6, 64, 65 P

Tape reader 6,764, 65
Teleprinter 6, 18
Title 19, 57

TRACE 61, 62, 67
Trace key 62

Wait 25, 40, 56
Word 5

