Techniques for program error diagnosis on EDSAC 2

By D. W. Barron and D. F. Hartley

The paper describes the techniques and facilities for program error diagnosis provided in the
EDSAC 2 machine-code and Autocode programming systems. The Autocode diagnosis system
can normally be used without any knowledge of machine code since some automatic interpretation
of diagnostic information is carried out, and all communication with the programmer is in source
language. The practical usefulness of the various techniques described is indicated.

Introduction

The detection and diagnosis of program errors is an
aspect of programming which has received less attention
than it deserves. The checking-out of a program
accounts for a not insignificant proportion of the total
time taken preparing a problem for the computer, yet
many present-day programming systems appear to
neglect this fact and offer little assistance to the pro-
grammer. Sometimes, when a program goes wrong, the
only help given to the programmer is a “core-dump”—
a printout of the memory contents in a uniform style—
from which he must find the trouble as best he can.
Clearly, he requires more than this; if effort can be
devoted to writing programs to read other programs
into the machine there should be some attempt to help
in getting them to work. It is desirable for the pro-
grammer to have selective information, both while his
program is running and after it has come to an untimely
halt. The slight increase in machine time which this
involves is balanced by a reduction in overall checkout
time.

Difficulties arise when automatic-programming lan-
guages are used, since the programmer is essentially one
step removed from the operation of the machine, and
hence from the effect of his errors. To present diagnostic
information in basic machine language means that the
programmer must be familiar with machine language,
and must have the compiled object program available.
We believe that the real purpose of automatic pro-
gramming is to avoid the use (and consequent teaching)
of machine code, and that it is unreasonable to expect
knowledge of the latter before program errors can be
found.

At Cambridge, interest in techniques for error diag-
nosis dates back to the early days of EDSAC 1 (see for
example Gill, 1951). The purpose of the present paper
is to describe the facilities provided to the machine-code
programmer of EDSAC 2, and to show how similar
features have been provided with the EDSAC 2
Autocode.

It is not proposed to give a full description of EDSAC
2, which can be found elsewhere (Barron and Swinnerton-
Dyer, 1960), or of the EDSAC 2 Autocode, which is an
algebraic formula language, similar in many respects to
Mercury Autocode (Brooker et al., 1961). For a full
description of the Autocode, see Hartley (1962). For
our present purpose it is sufficient to know that EDSAC 2

44

is a parallel, binary machine, with core store, and built-in
floating-point arithmetic. The core store comprises
17,408 words* plus a reserved store which contains 768
words of permanently wired-in programs and 64 words
of working space for these programs.

Error stops

It is desirable that any error in a program detected
by the hardware of the computer should provide some
kind of external indication. This can be a stop, a transfer
to a specified part of the user’s program (a trap), or,
in a fast machine running under control of an internal
supervisory or executive system, suspension of the
program after some monitor printing. In all cases there
is some information which is of immediate interest to
the programmer who requires, above all, to know the
nature of the fault which caused the machine to stop,
and the position reached in the execution of his program.
If this information can be presented at the error stop in
a form corresponding to the language in which the
source program was written, a substantial saving may
be made in both machine and programming time.

One of the wired-in programs of EDSAC 2 is the
Report routine. This prints the contents of the accumu-
lator, the order currently being obeyed in the object
program, the position of that order in the store, and the
contents of the two modifier (index) registers; it then
stops the machine, lighting a special lamp on the control
panel. This stop is irrevocable; the computer can only
be restarted by reading in another program. The Report
routine is entered under various error conditions arising
in the execution of an instruction, for example if the
function of the current instruction is unassigned, or if
an arithmetic overflow is detected. Alternatively it can
be entered by transfer of control from another reserved-
store routine, for example if the argument presented to
the square root routine is negative. If a report occurs
during execution of a reserved-store routine the Report
routine prints out the last order obeyed in the user’s
program, rather than the order which actually caused
the report.

One of the most common of beginners’ mistakes is to
refer to an unused store register, either in an arithmetic
instruction or a control transfer. Both situations are
detected by hardware as a consequence of the fact that

* 16,384 words have been added to the core store since the
publication of the paper by Barron and Swinnerton-Dyer.

GTOZ ‘ST Joquieda uo 1sanb Aq /6.0°'sfeulnolployxor julwod//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

Program error diagnosis

the store is cleared to binary ones at the start of each
program. An attempt to use the contents of an empty
register as an instruction produces an unassigned func-
tion, with a consequent report, whilst the Arithmetic
Unit recognizes a number consisting entirely of binary
ones as not representing a valid floating-point number,
and therefore reports.

The Trace

EDSAC 2 incorporates a built-in Trace facility which
enables a record to be kept of the jump orders obeyed
in a program, this being achieved by a combination of
hardware and software, using a program-interrupt
technique. The Trace is normally inactive, and is brought
into action by operating a key on the control panel. In
the Trace mode, the object program is interrupted after
each jump order, and a routine in the reserved store is
entered which adds details of the jump to a list, also held
in the reserved store, and then resumes the object
program. In the case of conditional jumps the inter-
ruption takes place only if the condition is satisfied so
that the jump actually occurs. The Trace is by-passed
during execution of subroutines in the reserved store, so
that only jumps in the user’s program are recorded.
Note particularly that this is completely different from
the system, often described as a trace, in which the object
program is executed interpretively, with printing of
information after some or all of the orders. This is
prohibitively slow, and undiscriminating in its output,
whereas the EDSAC 2 system produces a highly com-
pressed list, and only slows the program down by about
a factor of two.

The Trace record in the reserved store consists of a
series of items, each of which gives the source and
destination of a jump, a count of the number of times
this jump has been obeyed in sequence, and a count of
the number of times that this jump and the previous
item in the record have been obeyed in sequence. Thus
a single repeated jump produces one item in the list,
and a cycle of two repeated jumps takes up two items
in the list. At any time the 41 most recent entries are
retained in the list. As it stands this record is not in a
convenient form for the programmer, and service routines
are provided to edit the list and to print it in a more
suitable form. There is one routine which gives details
of the last two jumps obeyed: this is useful if the program
has jumped to an unexpected part of the store. The
most used routine, however, is one which analyses the
Trace record and prints it in the form of a series of
jumps and cycles. Briefly, the routine operates as
follows. Single and double cycles have already been
detected and contracted by the built-in Trace program.
The service routine continues this process by detecting
every sequence of items (or cycle) which occurs in the
Trace record more than once. The aim is to contract
the record so as to reduce the amount of printing, and
to do this in such a way that the cycles produced resemble
the natural sub-units or flow diagram of the program.

45

The effect of the service routine is to remove the details
of each cycle to a separate list and to replace each
occurrence of the cycle in the main record by an appro-
priate reference. In this process the cycles are taken in
their order of frequency so that inner cycles are detected
and removed before outer cycles, thereby obtaining a
maximum contraction. The service routine prints the
main record as a series of items each of which is either
a jump or a reference to a cycle. Each jump is printed
as the source address, the order in that location, the
destination address, and the order in that location. The
main record is followed by a list of the items comprising
each cycle, some of which may, of course, be references
to other (i.e. inner) cycles.

The Report and Trace facilities were devised by
Dr. D. J. Wheeler. No description of the EDSAC 2
implementation has previously been published, but the
facilities were proposed in Wilkes, Wheeler and Gill
(1957).

Post Mortems

When a program has stopped or been stopped, the
contents of selected parts of the store can be printed by
the Post Mortem service routine. A wide range of
output formats is allowed: a register can be interpreted
as an order pair, fixed-point integer, fixed-point fraction,
or floating-point number, in which case it can be printed
in floating-decimal form or rounded off to the nearest
integer. (The internal representation is floating-binary.)
For non-numerical work binary, base-4, and octal formats
are available. The contents of different parts of the store
can be printed in different formats; the required regions
of store are specified, together with the format, on an
input paper tape which is read by the service routine.
The addresses which specify the regions of store may be
absolute addresses, or they may be symbolic addresses
previously defined by the program. A further service
routine prints a list of all the symbolic addresses used,
together with the corresponding absolute addresses.

Dynamic checking

Post Mortem routines are not a great help if a program
has gone seriously astray, since relevant information may
have been destroyed. In this situation as in others
(notably when a program appears to run correctly but
gives the wrong answers) it is a great help to have
information printed during the operation of the program
so as to obtain a dynamic picture of what is going on.
There are two ways of achieving this in machine-language
programs. The assembly routine allows sections of a
program to be declared optional: such sections are
ignored unless a certain key on the control panel is
depressed during assembly. Thus the programmer can
include additional printing instructions which can be
obeyed during checkout, but omitted when the program
is known (or at least believed) to work. This tech-
nique requires anticipation on the part of the pro-
grammer; a more powerful facility is afforded by the

GTOZ ‘ST Joquieda uo 1sanb Aq /6.0°'sfeulnolployxor julwod//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

Program error diagnosis

Check-Point routine. This routine enables a pro-
grammer to establish check-points (or break-points) in
a program, and to specify for each check-point the
information to be printed, and the occasions on which
printing is to occur.

The check-point routine works in two phases. The
first phase follows assembly, and is essentially an exten-
sion of the assembly process. During this phase a data
tape is read specifying the positions of the check-points,
and the action to be taken at each one. A list is placed
in the store giving the details of each check-point, and
jump orders (blocking orders) are placed at appropriate
positions in the object program, the orders which were
previously in these positions being preserved in the
check-point list. At the end of phase one, the object
program is started. Phase two occurs every time control
reaches one of the check-points in the object program,
when control is transferred by the blocking order to the
check-point routine. First the contents of the arithmetic
registers, the modifier registers, and the page-layout
counters are preserved. Then the list for the check-point
is consulted, and any printing there called for takes
place, usually on an output channel other than that being
used by the object program. Finally the arithmetic
registers, modifier registers and page-layout counters are
restored, the original output channel is reselected, the
order which was originally at the check-point is obeyed,
and then control is transferred back to the object
program. A simplified version of this routine allows a
sequence of characters to be printed every time control
reaches a check-point.

Clerical and syntactic errors

We have so far been dealing with the errors which
show up during the operation of a program. There is
another class of errors which are much easier to deal
with; these are the clerical errors where, by mispunching
or misunderstanding, a meaningless instruction appears
on the tape, or a symbolic address is left undefined. The
assembly routine carries out a fairly thorough check of
the program as it is being read in. If an error is found
an indication is printed, the rest of the item (instruction
or number) is ignored, and assembly is resumed. How-
ever, if there have been any such ‘“‘input reports” the
program is not actually obeyed: at the end of the
program tape the machine stops with the “Report” lamp
on the control panel illuminated. Thus one scan
produces a listing of most of the errors of this nature.
(If there is more than one error in a single item, only the
first is listed.) For each error there is printed an
identifying number (which can be checked against a
standard list to find the cause of the report—for example,
“two minus signs in number”) and an indication of the
location of the offending item on the tape. This is the
address of the register in which the item would have been
stored; additionally, the machine halts every time an
error is found so that the operator may mark the
input tape.

46

Small corrections can often be incorporated in
programs by using the second input channel. An
instruction is terminated by a carriage return, but for
convenience of printing programs this can be followed
by a line feed or line feeds which are ignored by the
assembly routine. The tape code is so arranged that the
line feed can be converted, by overpunching, into a
symbol which will select the second input channel for
subsequent program input. At the end of the correction
another tape character switches back to the first input
channel, so that the machine resumes reading of the
main program tape. Larger corrections are usually
made by copying the tape and inserting new material
from a keyboard. This is done using reproducers,
designed at the Mathematical Laboratory, which
operate at a speed of 25 characters per second. The
duplicated tapes are checked on a comparator, also
designed at the Laboratory, which works at a speed of
about 400 characters per second.

Discussion

In the preceding sections the facilities available to the
machine-code programmer have been described. These
are part of a programming system that is built round an
elaborate symbolic assembly routine, and represent those
facilities which experience has shown to be most used
by programmers. (EDSAC 2 is run on an “open-shop”
principle.) Some facilities have been tried, and discarded
because they proved to be little used; outstanding among
these is the Comparison Post Mortem. This facility was
part of the assembly process, and checked the program
being read from tape against the program already in the
store, printing details of any discrepancies. This was
useful whilst the machine was output-limited, but the
installation of a 300 characters per second tape punch
made it reasonable to post-mortem larger areas of store,
and the Comparison Post Mortem fell into disuse, and
was omitted from the second version of the assembly
program.

In general it is true to say that the facilities most
popular with programmers are those which are easy to
use. Thus the check-point routines are disliked because
the data tape specifying the check-points has to be
prepared in an inconvenient form. The one exception
to this rule that we have encountered is the facility for
interpolating corrections on the second input channel
which, though very simple, is seldom used.

The Autocode system

The diagnostic features of the EDSAC 2 Autocode
were designed to provide similar facilities to those
available for the machine-code programmer, with two
overriding requirements: that they be simple to use,
and that they require no knowledge of the machine-code
language and the internal structure of the computer.
The following sections describe how the machine-code
facilities were adapted to meet these needs, but first we
consider some of the general principles involved in this
task.

GTOZ ‘ST Joquieda uo 1senb Aq /Bio'sfeulnolpioxo jufwody/:dny wouy pspeojumoq

http://comjnl.oxfordjournals.org/

Program error diagnosis

In order to avoid the necessity of using machine code
it is essential that all communication between pro-
grammer and diagnostic routines should be in terms of
the source language. This requires a certain amount of
reverse translation, which has hitherto been left for the
programmer to do, using an object program printout
together with a listing of storage allocation. To effect
reverse translation automatically, diagnostic routines
must have access to a store allocation map, which is a
natural by-product of translation and assembly pro-
cesses, and since diagnostic communication is normally
required during a post-mortem phase, this map can be
conveniently retained in any form of auxiliary storage
that is available. Thus, by keeping certain information
linking source programs with translated object programs
it is possible to provide diagnostic routines comparable
to the facilities available for machine-code pregramming.
Moreover, just as the machine-code programmer can
interpret the meaning of basic diagnostic information,
so also to a certain extent can a diagnostic routine
provide more information when dealing with object
programs produced by translators according to well-
defined rules. For these purposes it is essential that
compiled programs should be altered only at source-
language level so that diagnostic routines can produce
concise yet reliable information.

Fundamental to the working of all diagnostic routines
provided with the EDSAC 2 Autocode is the label list
produced by the translator. At run time, this is held
in backing store together with a copy of the object
program, and gives the machine addresses corresponding
to source program labels, cycle instructions and library
subroutines, and the base addresses of subscripted
variables. A name list is not required, since the Autocode
works with a fixed set of names for variables.

Autocode Reports and Rescue

Syntactic errors in an Autocode program are detected
during the input phase of the translation process. Each
error produces an Autocode Input Report, which consists
of an identifying number for the fault, the nearest label,
and the position of the offending item relative to that
label. The remainder of the item is ignored and reading
proceeds, but the machine stops at the end of the program
tape: in this way most of the syntactic errors are detected
in one pass.

However, if a report occurs during the running of an
Autocode object program, the information printed is
meaningless to the programmer as it stands, and must
be interpreted in the context of the source program. In
many automatic programming systems a listing is
provided of compiled object program and storage
allocation, to permit the interpretation of this kind of
diagnostic information at machine-language level. In
the EDSAC 2 system this procedure has been mechanized,
and is effected by a service routine called Aurocode
Rescue. This routine is kept on paper tape, and is read
into the computer by the operator whenever a report
occurs in an Autocode object program. It is fortunate

47

that the Report routine preserves the address of the order
causing the report. Thus, the Rescue routine uses this
address together with the label list associated with the
object program to determine the approximate position
of the report in the source program and, further, if this
is in a library subroutine, it is usually possible to locate
the position of the call to this subroutine from the link
in a similar manner. Both the function and the address
of the order causing the report give further information:
for example, if the function is to store the content of the
accumulator, then an overflow must have occurred, and
the address gives the variable to which a value was being
assigned at the time. Certain error conditions in library
subroutines are dealt with by transferring control to an
order with a characteristic unassigned function. When
the consequent report is analysed by the Rescue routine,
the characteristic function and its relative position
within the subroutine indicate the cause of the report.

The following are typical examples of outputs from
this service routine:

UNSET NUMBER IN X—AFTER LABEL 6

OVERFLOW IN LIBRARY 1—AFTER REPEAT 2

PROGRAM OVERWRITTEN AT Z(385—AFTER
LABEL 3

The first of these indicates that an instruction after
label 6 (but before the next label) has used the variable X
without a value having previously been assigned to it.
The second indicates that an overflow occurred inside
library subroutine number 1 called after the second cycle
instruction. In the third example subscripted variable Z
has overrun its allocated store, thereby overwriting the
program with a number, and the machine has reported
on attempting to obey this part of the program.

Although the information provided by Autocode
Rescue is not as precise as a machine-code report, it is
usually sufficient to enable a large proportion of errors
to be found easily and quickly. The routine is capable
of distinguishing between more than 50 types of error
stop, ranging from accumulator overflow to suspected
machine failure.

Autocode Trace

As with the Report, the record produced by the
EDSAC 2 Trace facility, described previously, is of little
interest as it stands if the source program was written
in Autocode. There are two reasons for this. First,
the items are printed as jumps from one absolute store
address to another, so that even if the compiled object
program and label list were available, the necessary
cross-referencing would be most tedious. Secondly,
some of the items in the Trace record may be irrelevant
to the Autocode program, since the Trace will record
jumps within system and library subroutines as well as
jumps in the object program proper. Thus a separate
service routine is provided; this is basically similar to
the machine-code routine, but overcomes the difficulties
described above. From the nature of object programs

GTOZ ‘ST Joquieda uo 1sanb Aq /6.0°'sfeulnolployxor julwod//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

Program error diagnosis

compiled by the Autocode translator, it is possible to
determine which items of the Trace record represent
control transfers corresponding to source-program
instructions, i.e. jumps, cycles and entries to system and
library subroutines. All other items are removed from
the Trace record, which is then analysed into cycles by
the same method as used in the machine-code service
routine. Before printing the record, the label list is used
to translate from absolute machine addresses to Auto-
code names. A typical output from this routine might
be as follows:

ACTUAL PRINTING NOTES

- 10 jump to label 10
-3 > jump to label 3 on a “‘greater
than” condition
INTEGER use of the system function
INTEGER
6 CYCLE I six times round cycle 1 (details
below)
RETURN return from subroutine
CYCLE 1 =
— 6 jump to label 6
PRINT use of the PRINT routine
10 REPEAT 3 ten times round the third cycle

instruction

Post Mortems and Optional Printing

An Autocode Post Mortem is provided to enable the
values of working variables to be obtained after a
program has been run. The programmer specifies on an
input tape the Autocode names of the variables required;
these names are printed with the values of the variables
for easy reference. Another service routine produces a
listing of the storage allocation, the absolute addresses
corresponding to labels, and the compiled object pro-
gram. However, this listing is deliberately arranged in
such a way that it cannot be read into the machine as an
object program unless it is completely repunched by
hand on a keyboard perforator. Attempts to modify
compiled programs at machine-code level are dis-
couraged. This practice is directly contrary to our
philosophy of providing a self-sufficient automatic
programming system, and in addition it injects a degree
of uncertainty into the form of compiled programs which
seriously limits the extent to which automatic diagnostic
routines can be used. Fortunately translation is
sufficiently rapid (of order five seconds for an average
program) to make modification of compiled programs
unnccessary. For fully developed programs there is a
separate service routine which punches on paper tape a
compiled program in base-32 form: this can be re-input
at high speed (1.000 characters per second). but again
does not permit editing or correction. It is not con-
sidered necessary. or desirable. to produce an object
program listing as an automatic by-product of translation.
The listing produced by the service routine is intended
as a diagnostic feature to be used when all else fails:

48

experience has shown that it is rarely used—the most
frequent use was in checking the translator!

There is a facility by which sections of program may
be made optional. This is virtually identical with that
provided for machine-code programmers: groups of
instructions are either included in the program or
ignored, according to the position of a control panel key
during input. The facilities of a check-point routine
are provided by the system of oprional printing, employed
by the programmer as follows. Any calculation instruc-
tion may be followed by the symbols *a, where » is an
integer from O to 5 inclusive. (A calculation instruction
is equivalent to an ALGOL assignment statement.)
Normally these symbols are ignored by the translator,
but if the key numbered n on the control panel is
depressed during input of the program, certain additional
orders are included in the compiled object program
following the calculation instruction. While the same
key is depressed at run time, these orders cause the
printing of *n, followed by the number evaluated by the
calculation instruction; if the key is raised the orders
have no effect. This printing usually takes place on an
output channel other than that being used for the main
output of the program. Thus the programmer can
specify optional printing at selected points in his program,
allocating numbers to give different modes or different
degrees of complexity of dynamic printing as convenient.
The options required for a particular run must be
indicated by key settings during input of the program,
and printing of any or all of these options can be obtained
by manipulating the keys whilst the program is running.
This facility is easy to use, and is very popular with
Autocode programmers.

Conclusions

The including of optional printing in a program is a
powerful technique for error detection, but it pre-
supposes anticipation by the programmer, and experience
suggests that other facilities are helpful, especially to the
novice and non-professional programmer. Probably
the most important facility after optional printing is
adequate monitoring of error stops. Above all, however,
the diagnostic system must be flexible, and must provide
selective printing.

When a computer is run under control of an operating
system there is a great temptation to restrict the diag-
nostic facilities in order to keep jobs flowing through the
system. We believe this to be a mistake: the system
should include claborate trapping, monitoring and
checking procedures, and the programming language
must allow the user to specify the diagnostic information
he requires. Checking-out a program involves some
interaction between programmer and machine. and one
should be prepared to sacrifice some efliciency in the
processing of jobs in order to make this interaction more
cffective. Efficiency is not measured entirely by the
proportion of time the computer is doing *“‘useful” work :
the overall time between presentation of a problem and
production of correct results is another measure, and one

GTOZ ‘ST Joquieda uo 1senb Aq /Bio'sfeulnolpioxo jufwody/:dny wouy pspeojumoq

http://comjnl.oxfordjournals.org/

Program error diagnosis

can gain here at the expense of absolute machine of a continuous process of development in which many
efficiency. members of the Laboratory staff, past and present, have
We hope to describe in a later paper how the pro- taken part. We wish to acknowledge these contribu-
gramming system currently being designed at Cambridge tions: it is impossible to assign individual credit for all
for a new computer attempts to meet these requirements, the ideas, but a large share must certainly go to Dr. D. J.
and to describe some new facilities for error diagnosis Wheeler. One of us (D. F. H.) is indebted to the Depart-
which are being incorporated. ment of Scientific and Industrial Research for a Research
The techniques described in this paper are the result Studentship.
References

BARrrON, D. W., and SWINNERTON-DYER, H. P. F. (1960). “The Solution of Simultaneous Linear Equations using a Magnetic
Tape Store,”” The Computer Journal, Vol. 3, p. 32.

BROOKER, R. A,, et al. (1961). Mercury Autocode Manual, Ferranti Ltd., List CS242A, 2nd edition.

GILL, S., (1951). “The diagnosis of mistakes in programmes on the EDSAC,” Proc. Roy. Soc. A, Vol. 206, p. 538.

HARTLEY, D. F. (1962). EDSAC 2 Autocode Programming Manual, University Mathematical Laboratory, Cambridge, 2nd edition.

WILKES, M. V., WHEELER, D. J., and GiLL, S. (1957). The Preparation of Programs for an Electronic Digital Computer, Addison-
Wesley, 2nd edition.

A convention to distinguish letter O from numeral zero
By H. McG. Ross

To avoid confusion when alpha-numeric data and programs are read into computers, a
convention is suggested to distinguish between letter O and numeral zero.

For a considerable time difficulties have been experienced 1. For printed documents (from typewriters, and line-
in computer work because of confusion between the at-a-time printers, etc.), letter O should appear 0
letter O and numeral zero. With the increasing use of and zero 0.

modern symbolic-programming methods, with their 2. For handwriting, if there is no possibility of con-
greater flexibility and increased opportunity to mix fusion, do not bother to introduce any distinction.
letters and numerals, the position has got worse and has 3. For handwriting, if confusion might arise, write
now reached the stage when it is felt that something letter O and zero O.

needs to be done about it. Convention 1 has the advantages that the eye will run

A variety of suggestions on this point have been made on for ordinary reading but the difference may be found

from time to time, including the following. on closer scrutiny; it is satisfactory for capital and small

1. Letter O should be “fatter” than zero. letters; it may be satisfactory for future alpha-numeric

2. Letter O should be a rectangular shape with optical character-recognition systems. .
rounded corners; this is quite widely used, par- Convention 3 is very easy to write, and the mark in
ticularly with ALGOL, but it is not easy to write. zero hints at the oblique line of scheme 5 above.

3. There should be a dot in the middle of letter O; A similar problem arises with confusion between
however, it is found that one’s eye tends to halt at capital letter], lower-case letter £ and numeral one.
this when reading. Here the solution is easier, and a corresponding set of

4. Zero may be split at the top, or at top and bottom conventions could be:

(when it may be confused with two parentheses), 1. For printing, letter], letter 1, and numeral |, 1 or 1.
or at the sides. Sometimes this has been used for 2. For handwriting, letter [, letter { or [, numeral
letter O. lorl,

5. Zero should appear as 0. This is widely used in (The only difficulty here is to write the serif of] small
meteorology and in British Government work, but enough and at a slope, to avoid confusion with 7;

a string of such zeros (as is common in data- some people might like to follow the Continental
processing wor.k) is definitely unsightly, and there European practice of a small bar through the seven, #.)
is confusion with phi, which is fairly widely used No difficulty has been found in following these con-
as a mathematical function or to mean figure-shift. ventions for all the printing machines used with Ferranti
6. Letter O, or sometimes zero, has been like an data-processing systems, which will in future be equipped
inverted Q. as standard in this way.
No one of these conventions has become widely Acknowledgement is given for contributions made by
accepted, and at the risk of another non-starter the Messrs. R. W. Bemer, G. E. Felton, and C. R. Merton,
following series of conventions is now put forward. and for permission to publish by Ferranti Ltd.

E 49

GTOZ ‘ST Joquieda uo 1sanb Aq /6.0°'sfeulnolployxor julwod//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

