Solution of Simultaneous Linear Equations using a

Magnetic-Tape Store

By D. W. Barron and H. P. F. Swinnerton-Dyer

This paper discusses the special problems involved in solving a set of simultaneous linear
equations when magnetic tape is being used for auxiliary storage. An account is given of a sub-

routine written to carry out this process on EDSAC 2.

A description of EDSAC 2 and its

auxiliary magnetic-tape equipment is given as an Appendix.

1. Introduction

The solution of a set of simultaneous linear equations
on a digital computer is a standard problem. Matrix
division and inversion can be regarded as special cases,
in which the equations have several right-hand sides.
It often happens that many of the coefficients vanish.
and that an iterative process is most convenient; but it
is necessary also to have a process which is generally
applicable, and of these the most used is the method of
Gaussian elimination (see Section 2).

The first library subroutine ever written for EDSAC 2
was for this process; it is 50 orders long and will solve
31 equations (as many as can be fitted in the main store)
in about four seconds. Recently we have found the
need to solve sets of equations larger than this, and for
these, auxiliary magnetic-tape storage has to be used.
The problems of access involved lead to some compli-
cations of technique and modifications of the usual
procedure; the purpose of our paper is to discuss these.

We are concerned with the solution of equations as a
subroutine, not as a complete program. If we merely
need to solve a given set of equations it is trivial to
write the input and output orders needed; but our
experience suggests that the solution of simultaneous
equations usually arises as part of a larger task.

There is a fundamental distinction, according as the
equations are stored by rows or by columns. In
Section 3 we discuss the technique used with row storage,
and give a detailed description of the EDSAC 2 sub-
routine we have written to carry out the process. In
Section 4 we give a theoretical discussion of the method
used with column storage. It appears that, other things
being equal, column storage leads to a faster and more
accurate solution, at the cost of some additional effort
in the programming: we have as vet no practical experi-
ence of this, since we only realized it after programming
the method involving row storage.

The process we use involves a method of interchange
different from the usual one. We have therefore given
in Section 2 a brief discussion of Gaussian elimination
and the precautions needed when using it. In view of
the possibility of working in fixed point, we have also
said something about scaling. We have mentioned also
a method of estimating the error, which serves, at the
same time, as a check against mistakes made by the
machine.

The description of the subroutine assumes some know-
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ledge of EDSAC 2. Unfortunately, there is no easily
accessible account in print; we have therefore included a
brief description of EDSAC 2, and in particular of the
auxiliary magnetic-tape equipment, as an Appendix.
This may be of interest also to readers who prefer to
skip the body of the paper.

2. Gaussian Elimination
2.1. Pivotal Reduction

We consider the solution of a set of n equations with
one right-hand side, which we write in the usual form

Ax = b.

The first part of the process is to reduce the equations to
triangular form by operations on rows, the basic opera-
tion being the subtracting from one row of a multiple
of another. The kth stage consists of eliminating x,
from equations k + 1, ..., n by subtracting appropriate
multiples of the kth equation. Thus, if we use undashed
letters to denote the values of elements before, and
dashed letters the values after, this stage has been
carried out, we have

aij = aij — a8y s
bi = b — aybylag,
fori=4k-+1,...,nandj=k,....n This process is

the pivotal reduction; we shall call the kth equation the
pivotal equation and the element a, the pivot.

If we perform the operation above for k = 1,2, .. ..
n — 1, the resulting equations will be in triangular form,
and the x; can now be obtained, in reverse order, by the
back substitution

X; = {bi - é a,-jx_,-}/a,»i

j=it1
(i=nn—1,...,1).

The process described above is unsatisfactory, since
large errors will be introduced if any multiplier is large
—that is, if a pivot is unnecessarily small; and it will
break down entirely if a pivot vanishes. The errors may
arise in two ways.*

* Normally the error arising from (ii) is entirely masked by that
from (i), and in an error analysis of the elimination process above,
(ii) would not produce additional avoidable error. However, we
are concerned to find a similar process which is satisfactory: now

(ii) must be mentioned because it would be a source of avoidable
error if we only cured the troubles caused by (i).
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(i) In the elimination the kth equation has to be
multiplied by a large factor before being sub-
tracted from subsequent ones; thus significant
figures are lost in the later equations.

(i) In the back substitution b, — Xa,;x; is a small
number formed as the difference of much larger
ones. Thus it is not known to the full precision
available in the machine (nor usually is a;): this
produces an error in x;, and consequently in the
x;(i < k) calculated from it.

Normally, both these difficulties are avoided by inter-
changing rows at each stage, so that the largest relevant
element in the Ath column comes into the pivot position;
the multiplying factor a;./a,. is then always less than
one. With magnetic-tape storage, however, such a
search and interchange may present difficulties—it
certainly could not be combined with the speeded-up
process of Section 3. Fortunately we can settle for a
little less: it is enough to ensure in the elimination

(i) that no equation is multiplied by a factor greater
than unity before being subtracted from another,
and

(i) that the element ay, in the pivotal position at the
end of the kth stage is the largest of those available.

2.2 Scaling

If the solution of the equations is to be done in fixed
point, it is necessary to scale the coefficients and right-
hand sides. Since one may have to shift right during
the calculations, it is natural to do the scaling according
to the way the coefficients are stored, scaling by columns
if they are stored in columns and by rows if they are
stored in rows. Scaling by columns is equivalent to
multiplying the variables by constants; thus it will have
little effect on the process of solution, and is obviously
always legitimate. In scaling by rows there is one pre-
liminary danger: it may happen that the coefficients in
some column are all small, simply because the corre-
sponding variable is large. If no precautions are taken,
row scaling will mean that these numbers, and others
derived from them, contain a needlessly large relative
error. Despite the extra inconvenience, in the case of
row storage it is therefore wise to scale initially by
columns.

Once this has been done, subsequent row scaling
presents no special difficulties. If an equation with all
coefficients small appears in the course of the calculations,
it is in fact advantageous to shift it left as far as possible,
even though this may lead to the use of it as a pivotal
equation. The errors which this seems to introduce are
inherent in the equations (which are ill-conditioned);
on the other hand, we do diminish the effect of
subsequent round-off errors.

2.3 Checks

The classical method of checking is to form residuals
by substituting the solution obtained back into the ori-
ginal equations. This is not wholly satisfactory, for two
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reasons. First, we may have obtained a solution of a
near set of equations (which is as much as we are
entitled to in practice) even though the residuals are not
small. Second, even if the residuals are small we cannot
deduce that the answers obtained contain a large number
of significant figures.

A better check—both for mistakes of calculation and
as a measure of the cumulative effects of round-off error
—is to work with an extra right-hand side which is the
sum of all the left-hand and right-hand sides. The
solution for this right-hand side should be

1 -+ sum of all the other solutions.

The inaccuracy in this is a measure of the error in the
other solutions. (This is essentially the check used in
hand calculation; but then, since mistakes are more
important than round-off errors, it is applied to each
step.) If some columns are very small or very large,
suitable multiples of them should be taken.

3. Technique Using Row Storage
3.1 Method

We now describe the technique used for the solution
of n equations with m right-hand sides when the equa-
tions, including their right-hand sides, are stored in
rows in successive blocks of the magnetic tape—that is
in n blocks of m -+ n words each.

The process is best understood by considering first a
simplified version, as follows.

(i) Read equation 1 to the main store.

(i1) Read equation 2 to the main store, and inter-
change with equation 1 if |a;,| < |a,].

(iii) Eliminate x, from equation 2 by subtracting
from it a,,/a,, times equation 1.

(iv) Rewrite processed equation 2 in its own block.

(v) Repeat steps (ii), (iii), and (iv) for equations
3,....n

(vi) Return to block 1 on tape and write back the
eventual equation I (after all the interchanges).

We have now eliminated x; from equations 2 to n,
by means of equation 1 and can repeat the process
for x, in equations 2 to n (for which the tape is cor-
rectly positioned), and so on. Although there is no
search for the largest pivot, this process is satisfactory
since it satisfies the conditions laid down at the end of
Section 2.1. When the equations have been triangulated,
the back substitution proceeds in the usual way, reading
down successively equations n, n—1,..., 1 and
forming the values of the variables in the main store.

This process requires n sweeps through the tape (each
sweep one block shorter than the previous one) and is
therefore very slow. It is possible to arrange that the
same arithmetic processes are fitted into fewer sweeps
of the tape, by eliminating several variables in one sweep.
Essentially this depends on the fact that we can eliminate
x, from equation 3 as soon we have eliminated x,
from equations 2 and 3, and so on. Thus we may
produce a revised version as follows.
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(i) Read equation 1.

(i) Read equation 2, exchange with equation 1 if
desirable, and eliminate x, from equation 2.

(iii) Read equation 3, exchange with equation 1 if
desirable and then eliminate x|, exchange result
with equation 2 if desirable and eliminate x».

(iv) Repeat with equations 4, 5, . . . so long as
there is room in the main store.

(v) Suppose the last equation that can be read in this
way is equation r. Rewrite it, after pro-
cessing, in its own block; then read equation

r == 1, climinate x;, x,,...,x, ;. with inter-
change if necessary, and rewrite it in its block.
Then do the same for equations r + 2, .. ., n.

(vi) Return to the head of the tape and copy the pro-

cessed equations 1, 2. ..., r — 1 into their own

blocks.
We are now (after one sweep) in the same situation
as after r — | sweeps of the previous technique; and we

can continue the triangulation in the same way, starting
with equation r. There is, however, a further refinement.
To get the maximum speed in this process, we must
pack as many equations as possible into the main store.
and it is inexpedient to waste space on the trivial zeros
which appear in the front of any equation from which
variables have been eliminated. Thus, whenever a
variable is eliminated from an equation, that equation
is moved up one place in the store, and only the non-
trivial part of an equation is written back on the magnetic
tape. If an equation has to be written back on to the
tape as soon as it has been processed [stage (v) above],
then the tape is moved back into position during the
elimination; even so. if less than 10 variables are being
eliminated, the arithmetic is finished before the tape is in
position.

After the triangulation is finished, the back substitution
is easy. The only possible difficulty is that we may have
so many right-hand sides that not all the values of all
the variables can be held at once in the store. In this
case we deal with as many right-hand sides at once as we
can. [t is natural to write up the values of the variables
in the positions within the blocks previously occupied
by the right-hand sides; in the last sweep through of
the back substitution, the triangulated equations can be
deleted, leaving the solutions as blocks of m words on
the tape.

3.2 Organization of the EDSAC 2 Program

From the remarks above it is clear that speed of
solution depends on having as much of the main store
as possible for working space. To this end the entire
contents of the main store, as they stand at the start of
the process, are written on the magnetic tape, and only
the orders for triangulation or back substitution brought
back into the main store. These orders are placed at the
beginning of the store, so that the working space is a
continuous block.
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The subroutine is in four main sections: these are
concerned with initial preparation, control of magnetic
tape, triangulation, and back substitution. There are
two entry points, A and B. The user first enters at A,
specifying m and n by the contents of the modifier
registers, and the tape number by a program parameter.
After checks for obvious inconsistencies (no right-hand
sides, too many equations, non-existent tape, etc.) the
subroutine plants those variable orders which depend on
m and n, moves the selected tape back to its beginning
and re-marks it with blocks as follows:

one block of 70 words for the triangulation and
magnetic-tape control subroutines,

one block of 1.019 words into which the contents of
the main store will be dumped (for engineering reasons
there are some registers whose contents cannot be
dumped),

n blocks of n -~ m words for the equations, and

one block of 44 words for the back-substitution
program.

The magnetic-tape control, triangulation and back-
substitution programs are then written in the appropriate
blocks, after which control returns to the master routine.

The user now writes his equations and right-hand
sides in blocks 1 to n using the magnetic-tape control
subroutine, which at this moment is set for blocks of
m -+ n words. When the equations are written, the user
re-enters the subroutine at entry B, whereupon the
sequence of events is as follows:

(i) The contents of the entire store (less five words)
are dumped on tape.

(i) The triangulation and magnetic-tape control
sections are read from the tape into their standard
position.

(iif) Triangulation is carried out.

(iv) The back-substitution section is read in place of
the triangulation and obeyed, and the answers
are written back on the tape.

(v) The former contents of the entire store are read
back from the tape. the last few orders for this
being placed in those registers whose content was
not dumped in (i) and which will not therefore be
overwritten.

(vi) The magnetic-tape control subroutine is set to
read blocks of n words, and control is returned
to the main program.

If the sum-check fails in (v) the machine will stop, but
the answers obtained will probably be correct. The
reader will notice that the various subroutines are so
placed on the tape that when any of them is wanted it
is in the next block to be read; thus no time is wasted
in unnecessary traversing.

There is an entry A’ which may be used instead of A,
whose effect is to have the solutions finally written up as
m blocks of n words. Using this involves some changes
in the description, but no differences of principle.

It will be seen that neither of the checks mentioned in
Section 2.3 is built into the program. To take a second
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copy of the equations involves two magnetic tapes, or a
great deal of wasted time during the writing up of the
equations. The extra column for a sum check, also, is
more easily formed when the equations are written
up in the main program, and its interpretation varies
so much that it is best left to the individual user.

We have worked throughout in floating point. [t
may be that fixed-point work, with scaling as in Section
2.2, would be more accurate, but the extra labour of
programming would be considerable, and the scaling by
columns would involve spending time on an extra sweep
through the tape.

The number of equations that the program will solve
is limited by the need to hold at least two equations
simultaneously in the main store during the triangulation.
The bound imposed by this is m + n < 474.

In addition, this number of equations would fill one
standard (1.800 ft) reel of magnetic tape, and the fifty-odd
hours taken in the calculation might be thought excessive.

3.3 Speed

The only satisfactory way to time a program of this
nature is with a stop-watch. We find, for example. that
to solve 100 equations with 1 right-hand side takes
nearly 7 minutes. However, it is interesting to compare
this with a theoretical estimate. We have about 950
registers of working space, and so the number of sweeps
through the tape should be about

(n? -+ mn)/(950 — m — n),

plus an allowance for wastage because we can only read
complete blocks. In one sweep each block is covered
four times (read—go back—write—go back at end).
There are n blocks of m -+ n words, with a factor of %
because of the gaps left for safety between blocks, and
the tape is traversed at 1,250 words per second. Assum-
ing that the time is dominated by magnetic-tape move-
ments, and that the back substitution takes a further
mn/950 traverses, this suggests a time of about

2n*(n -+ m)(n + 4m)usec.

In fact this is about half the truth; the discrepancy is
probably in the time taken to stop and reverse the
magnetic tape after most blocks. However, the func-
tional form of the answer should be correct, and suggests
that the actual time is about 4n*(n + m)(n -+ 4m)pusec.

4. Technique Using Column Storage

We now consider how the calculation should be
carried out if the equations are stored by columns on
the tape. As before, we start by giving a simplified
procedure in which only one variable is eliminated in
each sweep of the magnetic tape. Since all the coeffi-
cients in a column are available together, we can now
do the interchanges in the classical way; thus the sequence
is as follows.

(i) Read column 1 into the main store, interchange
the largest element with the first, keeping a record
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of the interchange, form the multipliers a; /a;,
and write the revised column | back on the tape.

(i) Read column 2 into the main store, make the

appropriate interchange, form a new column 2 by
, aij ]
ap = djj a”azz (l — )
and write the new column back on the magnetic
tape.

(i) Repeat (i1) for columns 3.4, ..., m + n.

These operations eliminate x; from all equations except
the first; and the rest of the triangulation goes on in a
similar way. In contrast with the case of Section 3, the
blocks remain of constant length: thus when eliminating
X, we read down a block of #n words and start processing
at the kth word of the block.

As in the case of row storage, time can be saved by
eliminating several variables at once. In this case, when
eliminating x,, we can write the Ath column on the tape
as soon as it has been processed; only the n—& multipliers
deduced from it need be held in the main store, together
with a note of the interchange involved. Thus only
(31)/(950 — n) sweeps through the tape should be
needed in the triangulation; this represents a large
saving in time (as against the method using row storage)
unless s is small.

A further advantage of column storage appears if
the arithmetic is done with fixed-point numbers—which
is possible even if the equations are initially given in
floating point. This gives greater accuracy, because
fixed-point numbers are held to greater precision in the
machine. The interchanges involved in processing a
column during one sweep can all be done before the
arithmetic is started. This arithmetic is equivalent to
the formation of a scalar product and can be done
double-length, with a further drastic reduction of the
round-off error. The initial conversion from floating-
to fixed-point numbers can be done during the first
normal sweep through the tape, and needs only a few
extra orders; it does, however, increase the block lengths
from n to n -~ 1, since the scaling factor has to be
retained.

We have not yet had occasion to program this process.
It appears to be more efficient than that using row
storage, but the gain in efficiency is at the cost of much
greater complication in the organization of the program.
This comes from the red-tape difficulties: the counts
are more elaborate and do not fit together so tidily. The
extra trouble of conversion to fixed point (in a machine
having both facilities) is slight, and is certainly worth
while.

Mr. Wilkinson has kindly informed us of a program
on ACE which uses a similar method. There each
column is processed completely the first time it is read
into the main store: thus scalar products can be accumu-
lated and round-off error is minimized. This process
requires n scans of the matrix, which is not serious
with drum storage but would be very slow on magnetic
tape.
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Appendix: EDSAC 2

1. General Description

EDSAC 2 is a parallel machine working in the binary
system. The high-speed store is composed of ferrite
cores and has a capacity of 1,024 words of 41 digits each.
This is called the free store since its contents can be
freely changed by the programmer, in contrast to the
reserved store, also composed of ferrite cores, which
contains permanently wired-in subroutines, together
with the working space they need (see Renwick, 1957).
A single-address order code is used, with two orders per
word. There are two modifier registers (index registers,
or B-registers), and the sequence-control register (or
instruction counter) can also be treated as a modifier
so that orders with relative addresses can be written in a
form which is independent of their position in the store.
The arithmetic unit provides full fixed-point and floating-
point facilities, with provision for conversion between
the two systems. The floating-point representation of a
number uses 32 digits for the numerical part and 8 digits
for the exponent, giving a range of approximately 103°
to 10 %, with a precision of 9 significant decimal digits.
Negative numbers are stored as true complements, and
zero is the same in both representations. Approximate
operating times are at present as follows:

120-200 psec
270-520 psec

Floating add/subtract
Floating multiply

Floating divide .. .. 670  usec
Fixed multiply .. 290-540 psec
Fixed divide .. .. .. 540  pusec
Shift n places .. 36 + 6n usec
Others .. 20-50 psec

Input and output are by means of five-track paper tape;
there are two input and two output channels, selected
by the program. Paper tape is read photo-electrically at
speeds up to 1,000 characters per second (with the
ability to stop on a single character) and output is at
30 characters per second. Auxiliary storage is on
magnetic tape, using two Decca twin-tape units.

2. Special Features

The control system of EDSAC 2 is based on a large
switching matrix containing 1,024 ferrite cores each
8 mm in diameter (see Wilkes, Renwick, and Wheeler,
1958).  Wires threaded through these cores control the
various gates in the machine; it is thus possible to
execute the various elementary transfers, which together
constitute an order, by switching a series of cores. The
way in which wires are threaded through the matrix
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determines the sequence in which the cores in the matrix
are switched, and also the gates to be opened. At
appropriate places the selection of the next core to be
switched depends on conditions elsewhere in the machine.
thus making alternative paths possible; for example. in
a multiplication the digits of the multiplier are inspected
one by one and determine whether or not the shifted
multiplicand is to be added to the partial result in the
accumulator. The use of this control-matrix system
makes it possible to include in the order code relatively
complicated orders for the transfer of data to and from
the magnetic tape.

There are some 80 orders in the order code including
full arithmetic facilities in both fixed and floating point.
After every floating-point operation the number in the
accumulator is ‘‘standardized” so that the numerical
part is between § and 1 in modulus, the exponent being
adjusted accordingly. Particular attention has been
paid to securing efficient round-off, and small integers
arc treated exactly. Thus the result of multiplying 2
by 3 in floating-point form is 6, and not 5-9999. . . .
Orders are provided both for direct and accumulative
multiplication; in the latter case the product can be
subtracted from the number in the accumulator if
required. Exchange, and add-to-store orders are also
provided. A cyclic left-shift order is available which
facilitates table-look-up operations.

With only two modifiers it is important to make sure
that they can be used efficiently. It is possible to set a
number in the modifiers positively or negatively, and to
add to or subtract from a modifier; the operand in these
orders may be a given number or may be the content
of a specified half-register in the store. Orders are also
provided which combine an increase or decrease in the
modifier content with a conditional jump on the resulting
value, and straightforward conditional jumps, exchange,
add-and-store, and store orders are available. The
content of a modifier register may be stored as the
function part of an order, so that ‘“‘instruction arithmetic”
can be carried out conveniently and quickly in the
modifiers. There are two special orders which enable a
specific quantity, or the content of a specified store half-
register, to be used to modify the next order. They
serve to provide additional modifier registers, and permit
both modifiers to operate on a single order, or an order
which affects the modifiers to be itself modified, neither
of which operations is otherwise possible. They are
invaluable in the “red-tape” sections of a program.

There is a comprehensive input conversion routine
which is accommodated in the reserved store. This
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provides a floating-address facility whereby orders and
numbers may be labelled and referred to in the program
by their labels: such references may precede the assigning
of a value to a label. The method used for processing
the floating addresses is similar to that described by
Wilkes, Wheeler, and Gill (1957). Addresses can be
modified by having parameters added to or subtracted
from them; numbers can be written with decimal and/or
binary scaling factors, thus 3-14159,,80, — 200. All
the necessary conversion of orders and numbers is
carried out during input; the input tape is read at almost
full speed, the necessary work of conversion occupying
the time between reading of successive rows of holes.
A full description of the programming system will be
found in Ref. 4.

3. The Magnetic-tape System

The magnetic-tape system is non-autonomous, in the
sense that responsibility for the transfer of data is shared
between the program and the control unit of the machine.
The read and write orders cause the transfer of a block
of data of specified length, together with the computa-
tion of a check sum, so that the share of responsibility
borne by the control unit is relatively large. The tape
is 3+in. wide and carries seven recording channels; of
these, five are used for data, one carries synchronizing
pulses, and the seventh is a marking channel by which
the tape is divided into blocks. The non-return-to-zero
system of recording is used, and a single (7 channel)
head is used for reading and writing, the necessary
switching being carried out electronically. The tape
moves at 100 inches per second and the recording density
is approximately 100 digits per inch on each (data)
channel, so that the transfer time is of order 0-8 msec
per word. The tape runs out of contact with the head,
the gap being about 0-0005 in. wide.

The recording of signals in the block-marking channel
is controlled by machine instructions, so that the program
can divide the tape into blocks of individually chosen
lengths to suit the problem in hand. The blocks are
numbered serially, a “label” being written in the data
channels immediately following the block mark. The
label also contains an indication of the capacity of the
block. Once a tape has been marked and labelled, data
can be written in a block without disturbing the contents
of other blocks, and once so written can be read any
number of times, so that the system is a truly addressable,
eraseable store. It differs in this respect from other
magnetic-tape systems in which data are recorded con-
tinuously along the whole length of the tape and must
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be read into the high-speed store and re-recorded on
another tape if alterations are to be made. It is an
advantage of the non-return-to-zero system of recording
that new information can be written over old information
with a smooth join between new and old.

The orders provided for reading and writing effect the
transfer of a block of data; it is the responsibility of the
program to ensure that the selected tape is in the correct
position, moving at full speed, with the circuits set to
read or write as appropriate. A block check-sum,
computed modulo 24 — 1, is written automatically at
the end of each block, and, on reading, the difference
between this and the sum of the data transferred is
placed in the accumulator so that the program can take
appropriate action if this should be non-zero. The usual
action is to repeat the reading operation up to a maximum
of twenty times, and then to give some indication to the
operator if the transfer is still incorrect. It is possible
to check writing by reversing the tape and then reading
the information just written, but this is time consuming
and was not thought worth while in the program
described in Section 3.2.

During magnetic transfers, the arithmetic unit and
control unit of the machine are fully occupied, so that
computing cannot proceed in parallel. However, an
automatic interrupt facility is provided which enables a
tape to be positioned on a selected block whilst computing
is in progress. If the tape is moving, but reading or
writing is not taking place, each time a block mark
passes the reading head the tape-drive is stopped and a
special flip-flop is set; this flip-flop is examined at the
end of each order and, if it is found to be set, the normal
control sequence is interrupted. The number in the
address part of a half-register set aside for this purpose
in the reserved store is increased by one; if it is not
equal to 2047 the tape is restarted, otherwise the function
part of the half-register is set to zero and the tape is not
restarted. In either case the flip-flop is reset and the
machine carries on with the execution of the next order.
All this takes very little time, so that, if the count is not
equal to 2047, the tape is restarted before it has suffered
any appreciable deceleration. In order to make use of
this facility the program must first start the tape and
read the next block label; the tape must then be re-
started forwards or backwards as appropriate and a
suitable constant placed in the reserved store. At any
later stage the program can find out whether the tape is
positioned correctly by inspecting the counter in the
reserved store; in fact no harm is done if a reading or
writing operation is initiated before a positioning opera-
tion has been completed.
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